BIG PICTURE

Students will:
- recognize the importance of problem solving and investigation in learning mathematics;
- recognize and apply the seven mathematical processes;
- practise appropriate learning skills, e.g., listening to classmates, legitimizing errors as part of the learning process, tolerating ambiguity, demonstrating perseverance.

<table>
<thead>
<tr>
<th>Day</th>
<th>Lesson Title</th>
<th>Math Learning Goals</th>
<th>Expectations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Celebrating 7</td>
<td>• Investigate patterns.</td>
<td>7m12, 7m16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CGE 3c, 4a, 4e</td>
</tr>
<tr>
<td>2</td>
<td>Tangram Tune-Up</td>
<td>• Sort and classify triangles and quadrilaterals.</td>
<td>7m39, 7m47, 7m48, 7m53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Identify perpendicular bisectors.</td>
<td>CGE 2c, 4f</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Create 2-D composite shapes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Compare similar shapes and congruent shapes.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Summer Survival</td>
<td>• Collect data by conducting a survey.</td>
<td>7m73, 7m75, 7m77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Select an appropriate type of graph to represent a set of data.</td>
<td>CGE 2c, 5a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Identify bias.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Can-Do Puzzles</td>
<td>• Solve problems involving patterning, 2-D shapes and 3-D figures, calculations, and probability.</td>
<td>7m47, 7m61, 7m81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CGE 3c, 5a, 5e</td>
</tr>
</tbody>
</table>
Math Learning Goals
• Investigate patterns.

Materials
• BLM 1.1.1, 1.1.2
• coloured markers

Assessment Opportunities

Minds On ...

Whole Class → Discussion
To set the stage for the development of positive attitudes toward mathematics, briefly identify how the class learning community will operate by reviewing key succinct messages for posters.
Students suggest why the rules or procedures are necessary.

Whole Class → Brainstorm
Ask: Where do we find 7 in our world?
Accept all answers and have students explain their response.

Action!

Pairs → Investigation
Pairs of students use a calculator and BLM 1.1.1 to discover patterns involving the number 7.
Pose the question: Could there be more than six digits in the length of the period of these decimals? Explain.
Students create other 7-related patterns or statements, using a calculator.
Clarify the term perfect square, linking it to measurement activities from previous years.
Students complete BLM 1.1.2 and record the solutions on overheads using different colours. Overlay the overheads so they can see the overall patterns.

Selecting Tools and Computational Strategies/Observation/Checklist:
Observe students, watching their calculator use and patterning skills.

Consolidate/Debrief

Whole Class → Student Presentations
Students report on their findings from BLM 1.1.1 and 1.1.2.
Encourage communicating using oral or written presentations that include precise language, diagrams, and charts.

Home Activity or Further Classroom Consolidation
Summarize your activities using sentence stems, e.g., I learned…, I discovered…, I remembered…, Our class will be great if we all…, I wonder why….
1.1.1: Celebrating 7

Name:
Date:

1. Calculate
 \[63 \times 12 = \quad 63 \times 123 = \]
 \[63 \times 1234 = \quad 63 \times 12345 = \]

 Identify and analyse the pattern.
 Use your pattern to predict the next 4 terms in the sequence.
 Check using a calculator

2. Find the values of
 \[7 \times 77 = \quad 7 \times 777 = \quad 7 \times 7777 \]
 Identify and analyse the pattern and extend it 3 terms without a calculator.
 Check using a calculator.

3. Calculate each of the following products.
 \[15873 \times 7 = \quad 15873 \times 14 = \quad 15873 \times 21 \]

 Use the pattern to guess
 \[15873 \times 28 = \quad 15873 \times 35 = \quad 15873 \times 42 = \]

 Check using a calculator.

4. Convert each of the following fractions to decimal form. Identify the digits that occur repeatedly within each decimal. Count the number of digits in the sequence.
 \[\frac{1}{7} \quad \frac{2}{7} \quad \frac{3}{7} \quad \frac{4}{7} \quad \frac{5}{7} \quad \frac{6}{7} \]
1.1.2: Prime Patterns

Complete the spiral of numbers and then shade in each square that shows a prime. Using a different colour, shade in all of the perfect squares.

Record all the patterns you notice about prime and composite numbers.
1.1.2: Prime Patterns – Prime (Answers)

<table>
<thead>
<tr>
<th></th>
<th>100</th>
<th>99</th>
<th>98</th>
<th>97</th>
<th>96</th>
<th>95</th>
<th>94</th>
<th>96</th>
<th>92</th>
<th>91</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>64</td>
<td>63</td>
<td>62</td>
<td>61</td>
<td>60</td>
<td>59</td>
<td>58</td>
<td>57</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>37</td>
<td>36</td>
<td>35</td>
<td>34</td>
<td>33</td>
<td>32</td>
<td>31</td>
<td>56</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>38</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>30</td>
<td>55</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>39</td>
<td>18</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>29</td>
<td>54</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>40</td>
<td>19</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>28</td>
<td>53</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>41</td>
<td>20</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>27</td>
<td>52</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>42</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>51</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td></td>
</tr>
</tbody>
</table>
1.1.2: Prime Patterns – Perfect Squares (Answers)

<table>
<thead>
<tr>
<th>100</th>
<th>99</th>
<th>98</th>
<th>97</th>
<th>96</th>
<th>95</th>
<th>94</th>
<th>96</th>
<th>92</th>
<th>91</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>64</td>
<td>63</td>
<td>62</td>
<td>61</td>
<td>60</td>
<td>59</td>
<td>58</td>
<td>57</td>
<td>90</td>
</tr>
<tr>
<td>66</td>
<td>37</td>
<td>36</td>
<td>35</td>
<td>34</td>
<td>33</td>
<td>32</td>
<td>31</td>
<td>56</td>
<td>89</td>
</tr>
<tr>
<td>67</td>
<td>38</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>30</td>
<td>55</td>
<td>88</td>
</tr>
<tr>
<td>68</td>
<td>39</td>
<td>18</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>29</td>
<td>54</td>
<td>87</td>
</tr>
<tr>
<td>69</td>
<td>40</td>
<td>19</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>28</td>
<td>53</td>
<td>86</td>
</tr>
<tr>
<td>70</td>
<td>41</td>
<td>20</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>27</td>
<td>52</td>
<td>85</td>
</tr>
<tr>
<td>71</td>
<td>42</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>51</td>
<td>84</td>
</tr>
<tr>
<td>72</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>83</td>
</tr>
<tr>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
</tr>
</tbody>
</table>
Math Learning Goals
- Sort and classify triangles and quadrilaterals.
- Identify perpendicular bisectors.
- Create 2-D composite shapes.
- Compare similar shapes and congruent shapes.

Materials
- square paper
- BLM 1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.5, 1.2.6, 1.2.7
- tangram set

Assessment Opportunities
To activate prior knowledge, use geometry, fraction, and measurement vocabulary.

Exploration

Home Activity or Further Classroom Consolidation
Challenge someone at home or in class with tangram puzzles (BLM 1.2.7). Ask if he/she knows any paper-folding techniques. Practise the activities to show the class the next day.
1.2.1: Constructing a Tangram from a Square

The seven tangram pieces can be geometrically constructed from a square.

Use paper folding and scissors to cut along the folds and create the seven tangram pieces.

1. Fold along the diagonal of the square. Cut.
2. Fold the perpendicular bisector of one of the right isosceles triangles. Cut along the bisector.
3. Crease the midpoints of the two sides of the large right isosceles triangle. Fold the line joining the midpoints. Cut.
4. Crease the midpoints of the two parallel sides of the trapezoid. Cut along the line that joins the midpoints.
5. Crease the midpoint of the longest side of the right trapezoid. Fold a line joining the midpoint to the opposite vertex. Cut.
6. Crease the midpoint of the longest side of the trapezoid. Fold an altitude from the midpoint. Cut.
1.2.2: Constructing a Tangram from a Square – Pattern
1.2.3: Creating Squares Using Tangram Pieces

A square has four equal sides and four 90° angles.

Use the following tangram pieces to create squares:

a)

b)

c)

d)

e)

f)

g)

h)

Use all 7 pieces.
1.2.4: Creating Right-Angled Isosceles Triangles Using Tangram Pieces

A right isosceles triangle has two equal sides with an enclosed right angle.

Use the following tangram pieces to create right-angled isosceles triangles.

a)

b)

c)

d)

e)

f)

Use all 7 pieces.
1.2.5: Squares and Right-Angled Isosceles Triangles
(Answers to BLM 1.2.3 and 1.2.4)

Squares:

\[\begin{align*}
 a & \quad b & \quad c & \quad d \\
 e & \quad f & \quad g & \quad h
\end{align*} \]

Triangles:

\[\begin{align*}
 a & \quad b & \quad c & \quad d \\
 e & \quad f & \quad g \\
 h & \quad i & \quad j \\
 k & \quad l
\end{align*} \]
1.2.6: Shape Challenge Using Tangram Pieces

Name:
Date:

1. Using your set of tangram pieces, identify:
 • a square
 • a rectangle
 • a triangle
 • a parallelogram
 • a trapezoid

2. Use two tangram pieces to create as many of the shapes listed above as possible.

3. Use three tangram pieces to create as many of the shapes listed above as possible.

4. Use four, five, six, and seven pieces to create as many shapes as possible.

5. Put two or more tangram pieces together to form a shape that is congruent with another tangram piece.

6. Use the two small triangle pieces to make three different shapes.

7. Make a pentagon using two tangram pieces.

8. Make a hexagon using five tangram pieces.

9. Use the five smallest tangram pieces to make a square.

10. Place the two large triangles around the square to form a triangle, a parallelogram, and a trapezoid.
1.2.7: Tangram Puzzles

Name:
Date:

Tangram Animals
- Fox
- Cat
- Chicken

Tangram People
- Shoeshine vendor and customer
- Runner

Tangram Numbers
- 1
- 2
- 3

(Answers)
Unit 1: Day 3: Summer Survival

Math Learning Goals
- Collect data by conducting a survey.
- Select an appropriate type of graph to represent a set of data.
- Identify bias.

Materials
- graph paper
- graphing software

Minds On ...

Whole Class ➔ Review
Ask several students to report on their tangram activities.
Recall kinds of graphs and their different purposes, e.g., circle graph shows parts of a whole, line graph shows change, bar graph shows relationship between separate items. Review important parts of a graph such as titles, labels, and scales.
Discuss how one event might prompt several questions for which different graphs might be appropriate, e.g., going to the beach.
- What type of graph would we use to show the number of students likely to be at the beach at different times during a day? (pictograph or line graph)
- What type of graph would we use to show the portion of time spent at the beach swimming, playing volleyball, and/or sunbathing? (circle graph)
- What type of graph would we use to show attendance at favourite local beaches? (bar graph)

Action!

Small Groups ➔ Brainstorm
Brainstorm seven topics that relate to summer activities. Discuss the importance of avoiding bias, asking clear questions, and having a fair sample in a survey.
Each group prepares survey questions for one of the topics, and shares its questions. The class critiques them for suitability as part of a survey.

Pairs ➔ Data Gathering ➔ Graphing
Each pair selects and writes one survey question on a piece of paper with their names at the top. In a chain from student to student, allowing seven seconds, circulate the questions for the class to respond to. A student at the end of the chain walks the paper to the other end of the chain. Stop the rotation of questions once enough data has been collected. Return papers to the pairs who posed the questions. Each pair chooses an appropriate graph type to display the data.

Learning Skills (Teamwork)/Observation/Rating Scale: Assess cooperation and class participation.

Consolidate Debrief

Whole Class ➔ Sharing
Pairs show their graph and explain why they chose that type of graph.
Ask:
- Were the results as predicted?
- How would rewording the question change the graph?
- Was there any bias in the questioning or in the display? Explain.

Home Activity or Further Classroom Consolidation
Present the data from your survey question in an alternative form, e.g., different scale, using technology.
Look for several types of graphs in print media and make a display.

Word Wall
- circle graph
- pictograph
- bar graph
- line graph
Day 4: Can-Do Puzzles

Math Learning Goals
• Solve problems involving patterning, 2-D shapes and 3-D figures, calculations and probability.

Materials
• dot paper
• number cubes
• cubes

Assessment Opportunities

Minds On ...

Whole Class ➔ Reflection
Several students show their original and their revised graphs from the previous task, highlighting the changes. Discuss which graph best displays the data, with reasons.

Whole Class ➔ Discussion
Ask: What does “doing mathematics” involve?
Develop a concept map including problem solving, looking for or creating patterns, working with 2-D shapes or 3-D figures, and performing calculations.

Action!

Small Groups ➔ Review
Prepare stations that might include:
• tangram puzzles;
• crossword puzzles, using geometric vocabulary;
• building seven-cube structures, using cubes, and recording them on dot paper;
• numerical skill improvement, e.g., game;
• using geometric shapes to create a personal logo;
• experiments; e.g., When will a sum of 7 result, if two number cubes are thrown? In 50 throws, how often will 7 occur? Predict the result in 1000 throws.

At each station, provide explicit written instructions to help students understand the task. Groups move through several different stations.

Learning Skills/Observation/Anecdotal Note: Assess students’ initiative and teamwork.

Consolidate Debrief

Whole Class ➔ Reflection
Students choose one task and write about the mathematics that they used, referring back to the concept map.
Select students to share their responses.

Home Activity or Further Classroom Consolidation
Make a math journal entry.
• How have you experienced success during these four days?
• Which were the most interesting activities?
• Which activities would you like to continue or do again?

Show someone at home the mathematics you completed.
• How do they use the skills of problem solving and communicating in their daily lives (job, hobby, household)?
• What mathematical knowledge do they use frequently?
Make notes on their comments to share with the class.

Reflection

Consider setting up permanent centres based on strands or other criteria.