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Tips for Teaching  
Math Facts 

1.	 Recognize that 
progressively learning 
math facts can lay 
important foundations 
for later mathematics.

2.	 Support the progression 
of increasingly 
sophisticated calculation 
strategies rather 
than jumping to 
memorization. 

3.	 Pose well-constructed 
problems to guide 
this progression and 
encourage student-
generated strategies.

4.	 Memorize for efficient 
calculations after 
students’ reasoning 
strategies are well-
established.

The Mathematical Territory 

Between Direct Modelling  

and Proficiency 

By Dr. Alex Lawson, Lakehead University 

The potential learning that exists in the territory between direct modelling and 

memorization of facts is foundational for a great deal of later mathematics  

and for mental fluency. How should children come to know their math facts?

Over the past few years, there has been a media outcry over children’s reputed 

lack of mastery of number facts and teachers’ apparent disinterest in having 

students memorize them, as this excerpt from the Guelph Mercury indicates:

The education bureaucracy has long held a disdain for teaching methods 

that emphasize “math facts,” such as multiplication tables and simple 

arithmetic such 7 + 8 = 15 . . . . Instead, Ontario schools mostly use 

“discovery math,” which allows students to explore concepts according  

to their own personal learning style.1

While such dichotomies make for good press, they misrepresent the situation. 

Most educators believe all children should learn number facts; however, they  

also believe that children should learn and understand much more math.  

Just memorizing the facts is no longer enough. In fact, it never was.
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Past Practice
Many of us learned our facts by starting with direct 

modelling – usually with concrete objects.2 To add 5 + 7,  

for example, we might have: 

1.	 counted a first set of 5 objects

2.	 counted a second set of 7 objects

3.	 counted from 1 again to reach 12 (i.e., the strategy  

of counting three times) 

Once we had mastered this method of addition, we would 

have memorized 5 + 7 = 12 as one isolated fact.

Unfortunately, this quick shift from direct modelling to 

memorization came at a cost for many students.3,4 The 

potential learning that exists in the territory between direct 

modelling and memorization of facts is foundational for a 

great deal of later mathematics and for mental fluency.  

What Math Lies Between Direct 
Modelling and Fact Memorization?
Students who, over time, construct a series of increasingly 

sophisticated personal strategies for solving calculations 

often learn mathematics that serves them in and beyond 

the classroom. In classrooms where teachers support the 

development of increasingly sophisticated addition and 

subtraction calculation strategies, children’s methods 

reflect three general phases of progression before they 

become proficient.2,5 

Phase 1: Direct Modelling and Counting. Consider our 

previous calculation, 5 + 7. During this phase, children  

use strategies such as counting three times (described 

above). From here, children begin to move away from  

fully modelling the problem. 

Phase 2: Counting More Efficiently. Children use strategies 

such as counting on from 5, stating 6, 7, and so on, raising 

a finger to track each count of a mental number line until 

they reach seven fingers raised. In doing so, they shift 

from counting the direct (concrete) model of the second 

number, to continuing the mental number sequence in 

their mind from the first model. Their fingers are no longer 

physical objects to be counted but, instead, a mechanism 

for simultaneously “counting the count”6 and tracking it. 

Phase 3: Working With the Numbers. This phase illustrates 

the mathematical advantages of supporting children’s 

evolving progression of calculation methods over quick 

memorization of facts, as children begin working with 

numbers rather than counting. Initially, they may use  

some form of a double.7 For example, to determine 5 + 7, 

some children will break up the 7 in order to give 1 to the 5,  

transforming the expression into 6 + 6, a double they 

know. Mathematically, they think “5 + (1 + 6) = (5 + 1) + 6,” 

capitalizing on the associative property of addition to make 

the numbers into something they know.8 While children 

will not know the name of the property, they do know  

that breaking up the addends and re-associating them  

will result in the same sum, or that a + (b + c) = (a + b) + c. 

This begins the foundation of algebraic thinking.

With instructional support from their teacher, children may 

later – among a number of other increasingly sophisticated 

strategies – learn to decompose numbers in order to add 

using the strategy up over ten. With the example of 5 + 7, 

they may reverse the addends: To add 7 + 5, they may first 

add 3 (from the 5) to the 7 to get to 10 and then add the 

remaining 2 to get 12 (see Figure 1).

Figure 1: Up Over Ten Strategy for Single- and Double-Digit  

Addition.

When children reach these later strategies, like up over ten 

to solve 5 + 7 = 12 with speed and ease, some will commit 

the equation to memory as a fact, while others will need 

some short targeted drill.9 Equally important, these children 
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will have built foundations for later mathematics, such 

as algebraic generalizations (a + b = b + a) and strategic 

efficiencies (breaking apart the second addend  

to get to ten and then adding the remainder). 

Later, these students can employ the same strategy with 

double-digit calculations. For example, when solving 55 + 77,  

they can commute the addends to start with 77; they 

can then break apart the 55 to add up by 3 to the nearest 

decade number (80), add 50, and add the remaining 2 to 

get 132 (see Figure 1).

Subtraction and the Roots of Algebra 
and Increasing Efficiency
It is with subtraction strategies that we see more clearly the 

foundations of future mathematics. Consider 14 – 8. Initially, 

as in addition, children will count three times by counting 

out 14 objects, removing 8, and recounting the remaining 

objects to find 6. As children shift to the next phase, they 

may eventually use the strategy of counting on to subtract. 

(Figure 2 illustrates both strategies). 

Figure 2: Subtraction as Removal (left) and Subtraction as Distance 

Between Numbers (right)

Rather than thinking of subtraction as simply removal, these 

children are now beginning to think about the distance 

between two numbers.8 This is a profoundly different 

understanding of subtraction, and it is foundational to 

developing more efficient mental mathematics. Children 

who understand subtraction as the distance between 

numbers can solve subtraction calculations by adding up. 

They can also solve subtraction calculations by maintaining 

the distance (difference) while shifting numbers mentally  

to a nearby decade number. For example, the calculation  

54 – 18 can be shifted up by 2 to the easier calculation of  

56 – 20 (see Figure 3).

Figure 3: Solving 54 – 18 Using Constant Difference (left) and the 

Traditional British Subtraction Algorithm (right)

With further teacher support, students will be able to use 

this constant difference strategy to understand, for example, 

why the often-mysterious traditional British subtraction 

algorithm (which standardizes this strategy) works. They 

will be better poised to determine why adding ten to the 

minuend (top number) and adding ten to the subtrahend 

(bottom number) will give you the same difference, that is, 

54 – 18 = (54 + 10) – (18 + 10). 

These are but a few of the types of mathematical 

understandings and strategic efficiencies that children 

can achieve if they work through a range of increasingly 

efficient calculation methods rather than simply jumping 

to memorization. That said, another contention in the 

opening commentary must still be addressed. 

Are Children Inventing Their Own 
Methods for Calculation?
The answer in effective classrooms is both yes and no. 

We have increasing evidence that teachers whose classes 

achieve the greatest amount of learning use a well-executed 

“guided-discovery” approach for learning facts,10 rather  

than direct instruction (which most of us would have 

experienced) or discovery mathematics (which the Guelph 

Mercury editorialist discussed). In classrooms where a 

guided-discovery approach is effectively used, we may hear 

conversations such as the one in the following excerpt. 

Teacher: Your friend Natalie had 5 gummies and you 

gave her 7 more. How many did she have then? 

Student: 12. 

Teacher: Did you use the same strategy as last time? 

Student: Yes, I counted on. 

Teacher: You like that strategy? 

Student: Yes I invented it. My friends use it in class.11
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The student believed she had invented counting on and 

noted with pride that her classmates used the strategy.  

This invention was, of course, guided – the teacher created 

a problem scenario where children would be more likely to 

develop and use this strategy (the first addend was hidden) 

and when the strategy came up, the teacher highlighted 

it and worked with children who were ready to use it. She 

knew the continuum of strategies from earliest to more 

sophisticated and she was pressing her students to move 

beyond counting three times. The notion that children 

develop their own calculation methods randomly is far 

from what actually happens in an effective mathematics 

classroom.

In Sum
Children should learn their number facts. However, they 

would benefit from learning these facts by using an 

increasingly sophisticated series of strategies rather than 

by jumping directly to memorization. As they work with 

these strategies, children develop deepening mathematical 

understandings that can be drawn on in everyday life as 

well as in junior- and high-school mathematics courses. 

Students who work through and become competent using 

increasingly sophisticated strategies do so, not through 

direct instruction, but rather as a result of teachers posing 

well-constructed problems that elicit and work with these 

evolving strategies, augmented by extensive practice in 

different contexts. Once children have worked through 

these reasoning strategies, they can memorize whatever 

facts have not yet become automatic using targeted drills.9
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