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About This Report

The Expert Panel on Mathematics in Grades 4 to 6 in Ontario was established by the
Ministry of Education to examine, synthesize, and outline the research to date on
teaching mathematics to students in the junior grades (Grades 4–6). Panel members
included teachers, consultants, principals, researchers, and professors.

There is now a growing body of research on mathematics instruction and learning 
in the elementary classroom, and this research has much to offer instructional practice
in Ontario. The Expert Panel members read widely and discussed the research in detail,
drawing out what they considered to be the essential ideas. They thought about these
ideas in light of their shared knowledge of mathematics education in Ontario. This report
of the Expert Panel on Mathematics in Grades 4 to 6 in Ontario is an examination of
these essential ideas; it is a strong vision of effective mathematics instruction and support
for students at the junior level. The report is for the benefit of all educators, all com-
munities, and all children in Ontario.

Context for the Report

Teaching and Learning Mathematics: The Report of the Expert Panel on Mathematics in
Grades 4 to 6 in Ontario continues an ambitious province-wide process of consultation
and professional learning on mathematics education. It builds on the foundation laid 
down by other expert panels. Figure 1 shows the whole series of reports in context.
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Figure 1: Recent Expert Panel Reports on Mathematics in Ontario Schools

Developed by a panel of mathe-
matics education experts (English
and French language) to draw 
practical conclusions from current
research about effective instruction
in mathematics in the early school
years in order to provide consistent,
strategic guidance for educators.
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“It is the questions that drive mathematics. Solving problems and making
up new ones is the essence of mathematical life.” 

(Hersh, 1997, p. 18) 

Mathematics is a fundamental human activity – a way of making sense of the world.
Children possess a natural curiosity and interest in mathematics, and come to school
with an understanding of mathematical concepts and problem-solving strategies that
they have discovered through explorations of the world around them (Ginsburg, 2002).
Yet, for many adults, the “sense making” of mathematics is lost. As educators we need
to provide experiences that continue to foster students’ understanding and appreciation
of mathematics. By providing mathematics programs in which students explore and
make sense of mathematical patterns and relationships, we can help students develop
mathematical knowledge that allows them to solve problems and explore new ideas, in
and out of the classroom. 

MATHEMATICS IN THE JUNIOR GRADES

The junior years are an important time of transition and growth in students’ mathematical
thinking. In Grades 4–6, the mathematics curriculum is changing in its content, sophis-
tication, abstraction, and expectations of student proficiency. In terms of content, for
example, the focus begins to shift from arithmetic to algebra, and data management
broadens to include more probability.

In addition to this shifting of content emphasis, there is also a move to more abstract
reasoning in the junior grades. Junior students investigate increasingly complex ideas,
building on their capacity to deal with more formal concepts. For example, students
learn to generalize patterns without having to draw each stage and record each term.

Junior students begin to make connections between different concepts and thus deepen
their mathematical understanding. They learn to develop methods that can be applied
in new situations. They begin to solve problems in more than one way. Junior students
develop their ability to communicate their thinking to others orally and on paper.
Finally, they are becoming more accurate in their work, both in reading problems 
and in recording solutions.
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As students work with new ideas and concepts, they need programs and instructional
approaches that will help them grow in their ability to use mathematics to make sense
of their world – that will help them become more “mathematically literate”.

CHARACTERISTICS OF MATHEMATICALLY LITERATE STUDENTS

Mathematically literate students can be recognized by the following characteristics. They: 

• consistently try to make sense of mathematics. Making sense is at the heart of
mathematical literacy. Mathematically literate students understand what they are
doing and why they are doing it. They have confidence that mathematics will 
assist them in solving everyday problems. 

• are developing a depth and flexibility in their mathematical thinking.
Mathematically literate students look at the numbers in a problem and think flexibly
about how best to solve the problem. For example, when they see 1002 – 998=?
they are likely to choose a method that is efficient and that is based on their feel for
the numbers – perhaps adding up by 2 to 1000 plus 2 more to reach 1002 and find
the difference of 4 – rather than working through the traditional subtraction algorithm
using “borrowing”. They are thinking about the numbers and how to best work with
them.

• make connections between concepts and see patterns throughout mathematics.
When these students learn a concept in one area, they can make use of it in new,
related areas (Hiebert et al., 1997).

• have a sense of numbers and are sufficiently efficient in their work that their
thinking builds as they progress towards a solution. As these students solve a
problem, they work through intermediate steps that give them information they 
can use to solve the final problem (Russell, 2000). For example, if they are given the
following problem: What are all the possible dimensions of rectangular floor plans that
could be made with 48 whole square tiles?, they will begin with two numbers that are
48 or smaller, and after some exploration they will notice, in trying various pairs,
that as the width of the floor increases, the length decreases. They will probably work
in an organized rather than a random way, beginning perhaps with 1 x 48, 2 x 24,
and so on. Their mathematics inquiry is not random, it is reflective; it builds and 
is therefore more efficient. 

• are willing to persevere in order to understand and solve mathematical problems.
These students enjoy mathematics and take pleasure in the insights they have as a
result of their efforts (Gadanidis, 2004). They experience mathematics as a creative
and interesting, though challenging, endeavour. 
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Characteristics of Mathematically Literate Students 
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For mathematically literate students, the junior years are a time of growing mathematical
confidence, interest, and sophistication in the subject. For other students, however, 
the junior years can be a time of growing confusion – a time when they abandon their
natural ability to think mathematically and to make sense of mathematical situations
(Ginsburg, 2002). For them mathematics is neither sensible nor creative but rather 
a set of rules to be followed (Hiebert, 1999). 

It is known that, initially, most children come to school as enthusiastic, curious thinkers,
whose natural inclination is to try to make mathematical sense of the world around
them. This natural curiosity can be nurtured in a problem-solving approach that begins
with, and fosters, students’ own ideas and methods. For example, Carpenter, Ansell,
Franke, Fennema, and Weisbeck (1993) found that two-thirds of Kindergarten and
Grade 1 students in mathematics programs focused on problem solving were able to
solve the following problem: If a class of 19 children is going to the zoo and each car can
take 5 children, how many cars are needed? When asked whether all the cars were full,
they said: “No, there is an extra seat in one car” or “Yes, because I’m going too!” They

• can communicate their mathematical thinking and can understand the mathe-
matical reasoning of others. “The heart of mathematics is the process of seeing
relationships and trying to prove these relationships mathematically in order to
communicate them to others” (Fosnot & Dolk, 2001a, p. 8).

These characteristics are summarized in the graphic below.



were making sense of the question. Contrast these findings with test results of Grade 8
students in non-problem-solving programs1 who were asked the same type of question,
but with larger numbers: An army bus holds 36 soldiers. If 1,128 soldiers are being bused
to their training site, how many buses are needed? Two-thirds of the 45 000 students tested
performed the long division correctly. However, some wrote that “31, remainder 12” buses
were needed, or just 31 – lopping off the remainder. Only one-quarter of the total group
gave the correct answer of 32 buses (O’Brien, 1999). For those students, learning “school
mathematics” (Fosnot & Dolk, 2001b) meant carrying out procedures without making
sense of what they were doing. Is there evidence that Ontario students stop making
sense of what they are doing in mathematics as they progress through school?

MATHEMATICS IN ONTARIO

Our overall reading of large-scale testing data combined with our knowledge of the field
leads us to the conclusion that the province has made inroads into teaching mathematics
in a more effective way, with a stronger emphasis on problem solving; we also find evidence
of improved student understanding and achievement. For example, results from the 1999
Third International Mathematics and Science Study – Repeat (TIMSS-R), in which
approximately 4000 Ontario Grade 8 students participated, are now available (Education
Quality and Accountability Office [EQAO], 2000). The 1999 test included a majority
of multiple-choice items, with some short-answer items and a few extended-response
items across all strands of mathematics. Results of data analysis indicate that boys and
girls fared equally well. Ontario students (both English and French) performed significantly
better than the international average (based on the results of 38 countries). This was a
statistically significant improvement from the 1995 results, which showed Ontario students
performing at or below the international average, depending upon the strand (International
Study Center, 1995). 

On the other hand, the results of provincial assessment for some students at the Grade 6
level are not quite as encouraging. In 2003, 36% of Grade 6 students achieved at level
1 or 2 in the provincial assessment. It should also be noted that there was a negative shift
in students’ attitude towards mathematics. In the Grade 3 assessment three years earlier,
68% of boys and 60% of girls indicated that they liked mathematics (EQAO, 2000).
By Grade 6, 55% of boys and 40% of girls reported liking mathematics.

Whether tests are international or provincial, they provide only a very limited view of
students’ mathematical literacy, which must be fleshed out with information from the
classroom. Not surprisingly, teachers see a range of mathematical literacy among their

TEACHING AND LEARNING MATHEMATICS4

1.The results are from the National Assessment of Education Progress (NAEP), which is an extensive testing
sample of students in the United States at regular intervals throughout their schooling. There is widespread
consensus that most instruction at this time (the 1980s) would have been traditional direct instruction 
of mathematics as rules and procedures rather than instruction based on a problem-solving approach
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students: from a limited understanding of the mathematics, through to an ability to
perform basic mathematics in a procedural fashion, through to a deep level of mathe-
matical literacy. While Ontario has seen an improvement in mathematical understanding
among many students, not all students have reaped such benefits. For some, mathematics
remains a subject that they learn to fear and dislike as they move through the grades.
Rather than developing mathematical literacy and confidence in their ability to do math,
some students become less confident mathematically, learn to stop thinking mathematically,
and come to rely on memorizing procedures to get correct answers. So although many
positive changes have been made, there is more to be done. 

How can educators continue to strengthen students’ mathematical literacy? What can
educators learn from their reading of the research, and how can those involved respond as a
system (teachers, principals, parents, boards, and the ministry) to ensure that they continue
to support the mathematical needs of Ontario students in the twenty-first century? 

A heightened awareness of and shift towards teaching through problem solving is occurring
in many Ontario classrooms. A factor contributing to this progression has been the quality
professional development opportunities that have been provided for lead teachers of
mathematics in the primary grades by the Ministry of Education. Anticipation of similar
professional development experiences for teachers in the junior grades is growing. This
report should provide the basis for the content of that professional development.

In the sections that follow, we will present our conclusions about instructional practices
that are effective in enabling junior learners to develop a deep level of mathematical 
literacy. We consider various resources that may be used in a junior math program, and
we look at factors that have a significant impact on the level of mathematical literacy
that the junior learner can achieve, including basic attitudes and background experience.
We examine the ways in which assessment supports students in their understanding of
mathematics. Finally, we look at the crucial role of different professionals and organizations
in Ontario in the continued development and support of strong mathematical literacy
in our students. 

We begin with an examination of effective mathematics instruction.
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“Clearly the twenty-first century requires a greater focus on a wider range
of problem-solving experiences and a reduced focus on learning and prac-
ticing by rote… The decision requires in part a value judgment as to which
needs are most important. But new research can also inform our choices.”

(Fuson, 2003, p. 301)

A BALANCED PROGRAM

An effective mathematics program should include a variety of problem-solving experiences
and a balanced array of pedagogical approaches. An essential aspect of an effective
mathematics program is balance (Kilpatrick, Swafford, & Findell, 2001). Students 
in the junior grades benefit from a varied approach that builds on their experiences 
in the primary grades and encompasses a balance of the following elements:

• Conceptual and procedural understanding. Junior students need instruction 
that helps them to develop conceptual understanding and also provides them with
opportunities to practise and consolidate procedures that are meaningful and 
efficient for them.

• Skill development and problem solving. A balanced program provides rich problem-
solving contexts that allow students to develop their understanding of mathematics
and that give them opportunities to practise and consolidate skills.

• Lesson types. There should be a balance in the overall program that incorporates 
a variety of lesson types, such as the problem-based lesson described later in this 
section, as well as minilessons, games, and mental math.

• Instructional approaches. Three approaches to mathematics instruction (guided,
shared, and independent) are interwoven throughout a balanced mathematics 
program. A detailed discussion of these approaches may be found in A Guide to
Effective Instruction in Mathematics, Kindergarten to Grade 3 (2004). Each of these
instructional approaches is featured in the classroom example beginning on p. 10.

• Groupings. A variety of groupings of students are planned for and integrated into
an effective mathematics program to provide students with time to share ideas with
their peers and to work independently.

7

2 Effective Mathematics
Instruction 



• Assessment strategies. A variety of assessment strategies should be used so that all
students have the opportunity to demonstrate what they know and what they can
do in the ways that suit them best.

EFFECTIVE INSTRUCTION: A CLASSROOM EXAMPLE

There is now an extensive body of research that finds that effective instruction, the kind
that will develop strong mathematical literacy, also includes the specific characteristics
listed below.

Characteristics of Effective Mathematics Instruction

Effective mathematics instruction: 

• is focused on having students make sense of mathematics; 

• is based on problem solving and investigation of important 
mathematical concepts;

• begins with the student’s understanding and knowledge of the topic;

• includes students as active rather than passive participants in their
learning;

• has students communicate and investigate their thinking through
ongoing discussion;

• includes all students, whether in the choice of problems or in the
communicating of mathematical ideas;

• incorporates ongoing assessment of student understanding to guide 
future instruction.

(Based on Hiebert et al., 1997 )

Effective mathematics instruction must include a variety and a balance of pedagogical
approaches. The type of instruction outlined in the list above is missing in traditional
mathematics instruction, in which the teacher poses a problem, explains the process of
solution in small, atomized steps, and then has students practise more of the same. Such
instruction has proved insufficient for generating a deep understanding of mathematics for
all (Battista, 1999). Many students may develop procedural fluency, but they often lack
the deep conceptual understanding necessary to solve new problems or make connec-
tions between mathematical ideas.

Students cannot simply receive knowledge from the teacher and understand it in the
way that the teacher thinks about it. As Lambdin (2003, p. 11) states: 

“A teacher’s goal is to help students understand mathematics; yet
understanding is something that one cannot teach directly. No matter
how kindly, clearly, patiently, or slowly teachers explain, they cannot
make students understand.”

TEACHING AND LEARNING MATHEMATICS8



Instead, students must construct or “reinvent” mathematical ideas in order to understand
them. In the view of Vygotsky (1986), concepts cannot be assimilated by the child in 
a ready-made form but have to undergo a certain development. Some teachers have
interpreted Vygotsky’s research as an injunction “not to tell” students how to do mathe-
matics but instead to let them “discover” mathematics (Chazan & Ball, 1999). Discovery
instruction has also, however, proved generally insufficient for many children (Askew, 1999).
Even in rich mathematical environments children will not necessarily “discover” important
mathematical concepts and understanding on their own. Moreover, if teachers are entirely
hands-off, students may miss out on some important mathematics. Therefore, we are
suggesting the use of instructional methods that will have some aspects of both of these
approaches – procedures based and discovery – but will be fundamentally different
from them and will encompass much more than either of them.

We are looking at instruction that uses a variety of instructional methods, which, taken
as a whole, have strong evidence of improving students’ understanding of and attitude
towards mathematics.2 We will illustrate these methods by way of an extended example
of a whole-class lesson, which follows, and, later, by some additional lesson suggestions.
As we do so, we will describe the research and reasoning that have led us to conclude
that instruction based on a problem-solving or investigation approach is the means by
which Ontario students will most readily achieve strong mathematical literacy.

The Specifics of the Lesson

Figure 2 on the next page is an outline of the specifics of effective mathematics instruc-
tion in the course of a whole-class lesson.

What follows is a discussion of each of these features: 

• The teacher chooses a problem that offers a range of entry points for
students at different levels. Every classroom contains students with a range
of understandings and prior knowledge. Students who are given problems

that are too difficult or too easy for them are not given the opportunity to learn from
the experience. To avoid this difficulty, teachers need to choose problems that can be
accessed in some way by the students.

For an example, we will turn to a lesson conducted in an Ontario classroom, on which
we will draw throughout this report to illustrate what is meant by teaching through
problem solving.3 We have chosen a division lesson to illustrate the points in this 
discussion, but it is important to note that the methods discussed apply to all strands
of mathematics, not just to number sense. 
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to Effective Instruction in Mathematics, Kindergarten to Grade 6.

3. This lesson is drawn from a videotaped record of an Ontario classroom. The names have been changed
and the lesson has been adjusted to create a model example of a strong learning context. The problem as
it was originally posed can be found in Wickett and Burns, 2003, pp. 151–168.

Beginning of the lesson
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Beginning • The teacher chooses a problem that offers a range 
of entry points for students at different levels.

• The teacher poses the problem or sets the investigation 
without giving the steps for solution.

Middle • Students work in pairs or in small groups to solve 
the problem.

• Students work to make sense of the problem in their 
own way. They look for patterns and for connections 
with other problems.

• The teacher asks careful questions that will help 
students to deepen and clarify their thinking.

• Students communicate their mathematical thinking to 
one another, explain their ideas, listen to their peers, 
and talk with the teacher.

• Students learn to persevere.

• The teacher takes the necessary time, focusing on key 
ideas in some depth, rather than on a broad coverage 
of concepts. At least one hour a day should be allotted to
mathematics instruction at the junior level. 

• Students and the teacher examine errors together 
as important opportunities for learning. 

End • Students share, explain, and examine a range of 
solutions with the whole class, discussing the common 
elements, looking for patterns, and making sense.

• The teacher facilitates the sharing of ideas and 
discoveries in a community of learners.

• The teacher organizes the discussion by choosing 
particular samples of students’ strategies to build 
understanding of specific mathematical concepts and 
to support students’ movement towards efficient methods. 

Figure 2: Specifics of Effective Instruction in a Whole-Class Lesson

The lesson takes place in a Grade 5 classroom towards the end of the school
year. Ms. H teaches a class with a wide range of abilities, both in mathematics
and literacy. In the first phase of the lesson Ms. H poses an opening problem
for a unit on division: “I have a problem. I have a jar which I know held 317 mar-
bles when it was full. As you can see, it is empty, and I want to fill it full of
marbles again. At my corner store I can buy small bags of marbles, with 23 mar-
bles in a bag.” She holds up the jar and the small bag of marbles. “I want to go
to the store and buy enough bags but no extras. How many bags should I buy?”



This problem can be solved through a wide range of methods and at various levels 
of mathematical sophistication. On the one hand, it can be solved by counting out
concrete materials to add up groups of 23 to reach 317. It can also be solved in more
demanding ways, through division without concrete representation or using many
other intermediate steps.

Some students may access the problem at its simplest level and just count each marble.
As they move through the process, through discussion with other students and during
the “reflect and connect” part of the lesson, they will begin to recognize that there may
be more efficient and effective ways of tackling the problem. Other students, who may
have a stronger understanding of the concept, can approach the problem more efficiently
from the beginning by looking for patterns or using other more strategic approaches to
the problem. To be able to choose problems with multiple entry points means that the
teacher needs to hypothesize about the students’ present level of knowledge and connect
that to the learning goals. Open-ended questions – in this case, questions with multiple
solution routes – offer the best framework for accessible problems for all students.

• The teacher poses the problem or sets the investigation without giving the steps
for solution. Over the last two decades, teachers have increasingly taken on the challenge
of incorporating problem solving into most aspects of their instruction. They have been
shifting their practice to include problems that are more than simply exercises at the
end of a lesson or a unit. They are also helping students to learn strategies for solving
various types of problems. While the use of problem solving as the vehicle for instruc-
tion includes these practices, it can involve much more: it can be used as the means of
introducing concepts rather than of simply engaging students in applying or practising
mathematical procedures or following steps taught at the start of a lesson. “Problems 
to be solved can be used effectively as a context for students to learn new concepts and
skills, not just as applications of previously learned skills” (Kilpatrick, 2003, p. 17).
Students learn concepts and skills more deeply through a problem-solving approach, when
the ordinary steps to solving the problem are not taught at the beginning of the lesson. 

• Students work in pairs or in small groups to solve the problem. Paired
or small-group work gives students a time to explore their own thinking
without having input from the rest of the class. It gives them a time to try

out a variety of ideas with only one or two other students. Students need this time to
pursue their ideas and to begin to clarify and to verify their thinking through discussion.
In addition, the paired or small-group work can be the source of another point of view
for students when they hit the inevitable roadblocks. 

Ms. H has not yet taught a standard algorithm for division, although a few
students have seen it at home. Rather than going through the steps of division,
students talk about the problem and look at the jar and the small bag of marbles.
Then they return to their seats to work in pairs. Each pair has a jar and a small
bag of 23 marbles. 
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• Students work to make sense of the problem in their own way. They look for patterns
and for connections with other problems. It would seem most efficient to teach students
a standard set of procedures (in this case, the traditional division algorithm) before solving
the problem. Yet for many students such instruction results in a superficial knowledge
of mathematics, rather than a deep knowledge of why the rules work and of how to use
them. Often the efficient rules in mathematics – for example, the steps for division or
the rules for finding the volume of an object, or even the mathematics underpinning
mathematical tools such as a metric ruler – are initially too abstract for most students
to learn through transmission.

In the case of algorithms, the level of abstraction is particularly challenging for students.
Historically the algorithms (standardized steps for calculation) were created to be used
for efficiency by a small group of “human calculators” when calculators were not yet
invented (Ma, 2004). They were not designed to support the sense making that is now
expected from students. For example, in order to make use of the standard algorithm
for division in use in North America, students must treat each digit separately. In solving
317÷23=? they would normally think, How many times does 23 go into 3? (rather
than 300), then, How many times does 23 go into 31? (rather than 310) (see Figure 3).

Although the standard algorithm is very efficient, when it is taught before students
understand the concept of division or have a solid understanding of place value, students
are forced to abandon their sense making of the question, and their results may be
senseless mathematics, as in students’ common responses to the army bus problem pre-
viously described. When, however, instruction begins with what students know, and the
teacher works with students’ ideas and methods before introducing formal rules, students
understand the concepts more deeply. Moreover, most students taught in this way make
fewer errors and their errors are more “sensible” and easily corrected than is often the
case when children try to follow rote procedures (Carpenter, Fennema, Franke, Levi, 
& Empson, 1997). Most teachers of multidigit algorithms have experienced the “wild”
answers that students give when they do not understand what they are doing. As one
frustrated student tersely informed researchers inquiring about her wildly incorrect
answer: “That’s the way it has to be done. This is the way I learned it in school, so it

TEACHING AND LEARNING MATHEMATICS12

Figure 3: Standard Division Algorithm



has to be the way” (Baroody & Ginsburg, 1990, p. 63). Where instruction begins with
student methods and works with student ideas to move towards more effective methods,
students keep thinking about the mathematics, trying to make sense of their work, and
eventually their understanding deepens. The mathematics does not end with the students’
own methods, but it should begin with them.

As students grapple with the problem, they typically begin by trying to make
sense of the different components – that is, how to use the information (a
bag of 23 marbles and the total number of marbles in a full jar) to find their
answer. As the pairs begin to work, some students work by themselves for
a while and then begin discussing their thinking with their partner. Other
pairs immediately begin a dialogue. The class is noisy, and there is a great
deal of gesturing towards marbles and jars on the table, pouring of marbles
into the jars, and writing of calculations and diagrams in mathematics books.
The nature of the talk between the students in the pairs varies. Some stu-
dents explain their ideas and convince their partner to use their method.
Other pairs of students explain and ask questions but work through the solu-
tion in their own way, conferring back and forth. 

• The teacher asks careful questions that will help students to deepen and clarify
their thinking. This is not quizzing by the teacher to get answers that are already known
(Chapin, O’Connor, & Anderson, 2003). Rather, it is an effort to find out what the
students are thinking and how they are thinking about it. Questioning is a vehicle for
supporting the development of students’ ideas. Students’ responses also provide the
teacher with information that is helpful in developing next steps in instruction for
individuals or the whole class.

Ms. H circulates among the students, asking them to explain and probing
with questions like the following: “Why do you think…?” “How do you know?”
“What does this number mean?” “Can you explain your partner’s reasoning?”
“Do you agree or disagree with their reasoning and why?” “ Why doesn’t this
solution work?” “Could you solve it in another way?” 

• Students communicate their mathematical thinking to one another, explain their
ideas, listen to their peers, and talk with the teacher. Communication of ideas plays
an essential role in the development of strong mathematical understanding in students.
Traditionally, communication of mathematics took the form of the teacher questioning
and one student answering, the teacher questioning and another student answering,
and so on (Forman, 2003). The students’ answers may or may not have included an
explanation. Today, there is extensive evidence that if students are engaged in mathe-
matics communication in which they are expected to explain their ideas clearly and 
follow other students’ reasoning (rather than just the teacher’s instruction), they are
much more likely to develop a deep understanding of the concept. In longitudinal
research conducted in several schools in Ontario, for example, Radford (2000) found
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that environments featuring rich discussion of this type allowed students to engage in
the re-creation of important underlying mathematical ideas. This type of communication
of ideas is at the heart of strong mathematics classrooms.4

In Ms. H’s class the students continue their work for some time. Many make
errors, and they find on the whole that the problem is a real challenge. Some stu-
dents make several false starts. Occasionally Ms. H will stop the class to discuss
a point or perhaps reassure the students that she expects them to be thinking
hard and that it’s okay to sometimes be confused, since this is part of the
process. Most of the mathematics communication, however, is done among the
students as they work in pairs and sometimes in groups to solve the problem.

• Students learn to persevere. Genuine mathematics, in which students engage deeply
with problem situations, can be a challenge. Solving a problem may take longer than
one class; students may experience moments of frustration. Traditionally, teachers have
tried to make this easier for students by laying out the path in small, incremental pieces.
However, students will often learn more deeply if they experience moments of hard think-
ing, followed by the satisfaction of finding solutions to the problem. Further, “getting
stuck” and learning how to persevere – and how to change tactics when necessary – is 
a fundamental aspect of learning how to work mathematically. Even among working
mathematicians, learning how to deal with getting stuck is a very common experience.
Leone Burton (2004) reported that 55 out of the 70 working mathematicians whom
she interviewed discussed struggle as part of their work. As one mathematician reported:
“The natural condition of doing [mathematics] research is to be stuck, most of the
time, on most of the things you are doing” (p. 59). 

• The teacher takes the necessary time, focusing on key ideas in some depth, rather
than on a broad coverage of concepts. Working with challenging problems takes time.
If students are to work with mathematics in a way that is likely to produce deep under-
standing, they need sufficient time to grapple with the math. The allotment of sufficient
time is a fundamental component of programs that foster mathematical literacy. At least
one hour a day should be allotted to mathematics instruction at the junior level. 

• Students and the teacher examine errors together as important opportunities for
learning. In effective instruction, errors are also treated differently from the norm – that
is, rather than being viewed as problems in need of direct correction, errors are viewed
as points of discussion and opportunities to learn. The teacher asks students to make
sense of why certain methods do not work. 

In addition to being allowed to make and discuss errors, students need to learn how to
verify answers for themselves, rather than relying solely on the teacher as the final arbiter.
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They need to learn how to judge whether their answers make sense and whether they
are possible (Flores, 2002). 

As the range of abilities in Ms. H’s class is large, the students eventually
solve the problem using a wide variety of methods and displaying various
levels of mathematical sophistication. Some of their first attempts to answer
the problem may be erroneous or inefficient. However, as they work through
the lesson (and future related lessons), they will examine and discuss their
errors and make strides in increasing the efficiency of their methods. 

• Students share, explain, and examine a range of solutions with the
whole class, discussing the common elements, looking for patterns, and
making sense. A thoughtful discussion of the commonalities and differences

between the solutions allows students to focus on the structures of mathematics. This
discussion helps them to organize their thinking, clarify it for others, and modify it 
if necessary. It also allows them to see how other students have approached the same
problem and how the different methods are mathematically linked, and thus broadens
and deepens their understanding of the mathematics.

Students must learn to explain their ideas not only orally but also in written form. They
learn to write up their ideas in an organized fashion, so that both the teacher and other stu-
dents can understand their reasoning. They learn to use a variety of forms to explain their
reasoning and to convince others of the soundness of their thinking. They learn to use
mathematical terminology and symbolism in order to communicate effectively with the rest
of the class and at the same time improve their own understanding. They learn to do these
things in the service of trying to communicate their ideas to their peers and to the teacher. 

Students begin the third part or end of the lesson by putting up their solutions
on chart paper or on the board. The class reassembles to discuss the various
solutions. Ms. H has already looked at the solutions and has decided which
ones she wants to have shared, on the basis of the discussion she thinks
they will generate. The students share their answers, and students question
one another about the various methods of solving the problem. It is apparent
that the presentations are not just for the teacher; students question one
another and ask for clarification. There is discussion among the students in
which Ms. H. stands back. At other times Ms. H interjects with questions to
draw out the important mathematical concepts and to support students in
the detail and clarity of their explanations and their questions. 

• The teacher facilitates the sharing of ideas and discoveries in a community of
learners. The creation of a community of learners is essential to an effective mathematics
program. In a community of learners, students feel comfortable discussing their errors,
try to understand other approaches, and work together to better understand concepts.
The community of learners must provide a risk-free environment – that is, an environment
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in which students are free to take risks, to share their ideas, solutions, and thoughts. 
A teacher establishes a sense of community, respect for others, and a risk-free environment
by modelling a positive attitude towards mathematics, accepting “mistakes” as opportunities
for learning, fostering positive critical thinking, creating displays of student math work,
and acknowledging and building on the unique ways in which each student thinks.

The development of a community of learners, especially in the mathematics classroom,
allows students and teachers to work together towards developing understanding. In a
community of learners the teacher is no longer the sole source of expertise. With the
establishment of a community, students are better able to engage in productive mathe-
matical exploration and discussion.

The kind of communication encouraged in a community of learners is a skill that students
need to learn. Teachers will need to spend time brainstorming with students about what
good communication looks like (e.g., partners look at each other when they talk) and
what it sounds like (e.g., “I’m not sure I understand what you mean. Can you explain
it again?”) Some teachers have students act out or model a good math discussion –
including a worthwhile disagreement – in order to support students’ ability to work 
as an effective mathematics community. 

• The teacher organizes the discussion by choosing particular samples of students’
strategies to build understanding of specific mathematical concepts and to support
students’ movement towards efficient methods. During the end-sharing part of the
lesson, students will describe and discuss their thinking and strategies. Unanticipated
mathematical ideas may arise that the teacher considers worth pursuing in depth. Beyond
this, however, the teacher hopes to draw out of the discussion the concept that was the
reason for choosing the lesson. 

A few pairs of students try to determine the number of bags needed by
measuring the height of one bag of marbles in the jar and then multiplying
up or dividing to find how many bags are needed to reach the top of the jar.
This is an unanticipated method that interests the students, and Ms. H.
decides to pursue discussion of it. While the mathematics these student pairs
use is accurate, their final answer is not as accurate as the answer found by
those groups who begin with the total number of marbles needed. The class
discusses why the method of measuring was less accurate than other methods
using the total number of marbles. 

As students continue to share, Ms. H also draws out of the discussion one
of the big ideas of multiplication and division – that is, that they have an
inverse relationship and therefore one can both multiply (or add up) to find the
solution or, more elegantly, divide (or repeatedly subtract) to find the answer.
For example, pairs of students have written their solutions on the board, and
Ms. H asks questions about two of the solutions (see the examples below) to
focus the discussion: “How is it that Maria and Paula multiplied [example B]
and Parmvir and Raj divided [example C] and still got the same answer?”
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Some Solutions to the Marble Problem 

Example A: Doubling Strategy

Example B: Multiplying-Up Strategy



Planning and Knowledge

The description given in the preceding pages has delineated some of the detail of
teaching a whole-class lesson using a problem-solving or an investigation approach.
One can appreciate that such a lesson does not simply “happen” but is the result of
planning as well as of a strong knowledge of both mathematics and pedagogy on the
part of the teacher. The following is an outline of some aspects of the planning and
knowledge needed to undertake this kind of instruction (see Figure 4 on p. 19). 

• The teacher chooses a lesson with the big ideas of the mathematics topic in mind.
Many teachers are justifiably concerned about whether the mathematics lessons that
they present focus on the important concepts that students need to know for future
mathematical success. While it would seem common sense that most of the mathematics
taught in various text and non-text lessons are built on mathematics concepts important
for mathematical development, this unfortunately is not always the case. In the TIMSS
video analysis of the mathematical content of observed lessons in the United States,
Germany, and Japan there was a wide discrepancy in the quality of mathematics content.
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Example C: Continental Division Algorithm
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Planning • The teacher chooses a lesson with the big ideas of the
mathematics topic in mind.

• The teacher is aware of the many strategies students
might use to solve the problem in the lesson and of the
foundational big ideas that underlie these strategies.

• The teacher anticipates misconceptions that students
might have about the mathematics in the lesson and 
prepares to address them.

• The teacher chooses the next lesson to build on what 
students know and to direct them towards making new
connections to extend their knowledge.

Figure 4: Some Aspects of Planning and Knowledge Needed for Instruction

5. The term big ideas was coined by Schifter and Fosnot in the course of their professional development
work with teachers who were learning mathematics more deeply. Schifter and Fosnot defined big ideas 
as the “central, organizing ideas of mathematics – principles that define mathematical order…. [T]hey are
connected to the structures of mathematics” (1993, p. 35). 

In more than half the Japanese lessons, the quality was judged as high; in almost all of
the U.S. lessons, the content quality was low (Stigler & Hiebert, 1999). The judgements
were based on whether important mathematical concepts were addressed in the lesson.

When teachers have curriculum that is structured and clustered around the essential topics
in mathematics and, further, underpinned by the big ideas within each topic, they have one
possible way to determine what constitutes lessons that are likely to lead to the learning
of important mathematical ideas. For example, within the topic of multiplication and
division there are a number of big ideas.5 When students construct a big idea, it is big
because they make connections that allow them to use mathematics more effectively and
powerfully (Fosnot and Dolk, 2001b). The big ideas are also critical leaps for students
who are developing mathematical concepts and abilities. 

In the case of Ms. H’s class, when students have constructed the following understanding –
that: 

the total number of marbles÷ the bag of 23 marbles=the number of bags needed 

is the inverse of

the bag of 23 marbles x the number of bags needed=the total number of marbles 

– they have constructed the big idea that multiplication and division have an inverse
relationship. They will be able to use this knowledge to solve a range of problems flexibly
and will be prepared to work with the concept of equality in algebraic reasoning. Students
who construct this understanding of the inverse relationship know that ? x 23=317 can



be solved by 317÷23=? Or later, using algebra, they will understand why, if 23x=317,
they can then solve for x=317/23. When children construct these ideas and make these
connections, they are working creatively and flexibly with numbers, which activity is at
the core of what mathematicians do. 

In addition to focusing on this idea, Ms. H also intends to look at some of the
different strategies students have used, in order to support student movement
from some of the more inefficient methods (e.g., adding up by doubling 23
to reach a total of 317 to find the number of bags of marbles needed [example A,
p. 17] towards the more efficient methods of multiplication [example B, p. 17] and,
more efficient still, division using subtraction of groups of 10 [example C, p. 18]).

• The teacher is aware of the many strategies students might use to solve the problem
in the lesson and of the foundational big ideas that underlie these strategies. If
teachers instruct by starting with student thinking, they must have some knowledge 
of the progression of student strategies in a given mathematics topic (Baek, 1998). One
of the goals in mathematics is to have students eventually become fluent and flexible in
their mathematical calculations and in the application of rules while at the same time
continuing to understand what they are doing. In order to foster student movement
towards more efficient methods of mathematics and do so with understanding, teachers
need to have information on the progression of strategies that students might use within
a given topic. In addition, they need information on what these strategies indicate
about students’ understanding of the mathematics concepts.

There is a very loose progression of strategies that students use. In solving division
problems, for example, these may range from initial strategies based on concrete modelling
through to the efficient and flexible use of some type of division algorithm. The pro-
gression is not linear; it varies from student to student, with some students “skipping”
typical benchmarks and others diverging along the way to investigate tangential ideas.
It is also highly dependent upon the instructional methods used. This progression of strategies
is unlikely to appear in classrooms unless instruction begins with student ideas. 

• The teacher anticipates misconceptions that students might have about the 
mathematics in the lesson and prepares to address them. As teachers become familiar
with students’ various solution methods, they also develop a knowledge of the typical
misconceptions that students will hold and can prepare to address them productively
during the discussion. 

Ms. H raises the issue of the remainder by posing the question: “I notice
that Parmvir and Raj [example C] divided for an answer of 13 R18 but said
they needed 14 bags. Why did they change their answer to 14?”The students
debate about the “math” answer of 13 R18 and the real-world context of the
problem – the reality that no store is going to break open a bag and sell only
18 marbles from it. They discuss what the R18 means and agree that 14 bags
are necessary. They would not say that 13 R18 bags should be purchased,
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because they are engaged with the problem and trying to make sense. While
they have sorted out the issue of the remainder in this problem, it is one they
will address in many different contexts – Ms. H knows that children struggle
with what the remainder means. She also wants to lay the groundwork 
necessary for understanding how and when to continue the division so that 
an answer with decimals results.

• The teacher chooses the next lesson to build on what students know and to direct
them towards making new connections to extend their knowledge.

In a subsequent lesson Ms. H will introduce the structure of one possible
algorithm (the Continental standard algorithm) using student information. One
pair of students has already used this method (see example C on p. 18) as a
result of their discussion with the teacher. (They were using an unstructured
form of this method on their own but needed help to write it in an organized
way.) Ms. H will take example C, discuss how the pair of students used the
Continental algorithm, and discuss how other students (who are at this
stage of mathematical development) can use it to organize their thinking in
a manageable and efficient way. 

Teachers who are reading and evaluating this example of a Grade 5 division lesson
might consider its merit by asking whether it makes for a “good mathematics story”
(Gadanidis & Hoogland, 2003). Does it resonate with students? Does it offer opportu-
nities for students to gain mathematical insight?

EFFECTIVE INSTRUCTION: OTHER LESSON EXAMPLES

An effective mathematics program encompasses a balance of instructional approaches
within a variety of learning opportunities. The preceding lesson includes two of the three
approaches of shared, guided, and independent mathematics. In the other types of learning
opportunities that students should be able to experience in the mathematics classroom,
one or other of these components predominates. For example, in minilessons such as the
one described on the next page, the focus is on guided mathematics. In lessons in which
students work cooperatively to solve puzzles or play math games, the emphasis is on shared
mathematics. Some lessons focus largely on independent student work, and some lessons
include opportunities for students to practise the mathematics concepts that they developed
previously. A discussion of some of these other learning opportunities or types of lessons
follows, beginning with a consideration of occasions for practice in rich contexts. 

Rich Contexts for Practice

Students need opportunities to practise or “routinize” their mathematics learning
in rich contexts. If students use their own methods to solve problems and teachers then
scaffold these methods to more efficient but accessible methods, students are more likely
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to understand what they are doing. Most adults learned rules and procedures by memoriz-
ing first and then perhaps understanding later. In this document the approach taken is
that effective instruction works with students’ ideas first, supports the growth of students’
understanding and development to the point of efficiency or rules, and then offers rich
opportunities for routinizing their procedures and learning. These opportunities should
be both to practise and to continue to explore mathematics. Practice in the absence of
continued exploration by students is not an effective use of precious mathematics time. We
agree with Fuson (2003), who suggests that “drilling for long periods on problems involv-
ing large numbers seems a goal more appropriate to the twentieth than the twenty-first
century” (p. 302). 

Mental Math

Mental math skills can be developed and practised in guided minilessons. Mental math
involves calculations done in the mind, with little or no use of paper and pencil or cal-
culator. It is an essential component of effective instruction at the junior level. Guided
minilessons are opportunities for students to work mentally on various calculations or
problems. Students may be writing some numbers down to keep track, but the goal is
to have them work with numbers in a flexible way, using mental math. As students develop
their ability to use mental math calculations, they often use the big ideas in mathematics.
For example, in the case of multiplication of more than one digit, students work through
problems to construct the big idea that numbers can be broken up into parts and multi-
plied and the products of the parts can then be added together to get the total product
(the distributive property) – for example, 12 x 13=(6 x 13)+(6 x 13). They know that as
long as all the 12 groups of 13 are accounted for, the sum of the products of the parts
is the same. Teachers can support students’ ability to play with the essential structures
of mathematics in this way by working with related strings of calculations in minilessons.
Looking at another classroom example (Fosnot & Dolk, 2001b, pp. 106–107) will
clarify this point.

Grady wants to strengthen his students’ understanding of the distributive
property and give the class a chance to practise its use. He writes down the
strings of related calculations found on the next page. Most students know
the mental answer to the first calculation. Some have memorized it; others
think 10 x 6 and then divide 60 in half to get the answer. They also know that
30 x 6 is similar to 3 x 6=18 but 10 times as big. However, they struggle with
35 x 6. Most students double 35 to get 70 and then add that three times
(35 x 6 is same as 70 x 3). However, someone else has a shorter way: that
student simply adds the products of the first two calculations in the string,
30 and 180. The students discuss this strategy and try it out on the next
string of numbers to see whether it works. This is not an extended lesson
but a minilesson for practice. It is similar to a writing conference on a spe-
cific topic in that it is an opportunity to focus on one specific idea over a
series of examples. This is often only a 15-minute lesson. 
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A Mental Math Minilesson to Develop 

the Distributive Property

Grady’s Strings 

Mental math is also sometimes used by students to communicate their thinking or to
explain how they solved a problem. For example, some of the students in Ms. H’s class
explained to the rest of the class that they estimated how many bags of marbles would
probably be in the jar by doubling mentally: “I doubled 23 to make 46, and 46 to make
92, and 92 to make 184, and then I knew the next one would be too big because 184 is
close to 200.” Students will use their mental math skills both to estimate and to check
the reasonableness of their answers. 

Math Games and Puzzles

Math games and puzzles provide a rich context for practising mathematics concepts.
Well-designed math games are another way for teachers to have students hone their profi-
ciency with numbers (Kamii, 1994). As Wickett and Burns state about their inclusion of
games in the development of division concepts: “Our goal is to give additional alterna-
tives for providing students much needed practice with division while also continuing
to engage them in thinking and reasoning” (2003, p. xvii). It should be noted that these
are games that support the development of specific mathematics concepts. 

While games and puzzles can be an effective support for mathematical literacy in the
Number Sense and Numeration strand, they are also useful in other strands such as
Geometry and Spatial Sense or Data Management and Probability. The example that
follows shows how a cooperative puzzle is used in the class to give students practice in
using terms from geometry and measurement. 

Ms. S is working on the development of students’ understanding of definitions
of various geometric and measurement terms in context by using the cooper-
ative puzzles from Get It Together (Erickson, 1989, p. 53) called “Stick Figures 3”
(see p. 24). Students are seated in groups of four, with each person in the
foursome holding a clue to the one figure they must build as a group. (The
remaining two clues are turned face down on the table to serve as extra
clues if the students need help.) Ms. S knows that as students try to solve



their problem, they will need to understand the terms used in the problem
in order to find the answer. As students solve a series of cooperative puzzles,
they are clarifying the meaning of mathematical terminology and getting practice
in using it.
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There are twelve sticks in the  
figure. The sticks are unbroken  
and they don't overlap.

Make the figure!

The figure is made up of two  
triangles that are not congruent.

Make the figure!

One triangle has a perimeter of  
seven sticks.

Make the figure!

No segment in the figure is shorter 
than two sticks. 

Make the figure!

The two triangles share a side.

Make the figure!

Stick Figures 3

There is a quadrilateral in the figure 
that has a perimeter of nine. 

Make the figure!

Stick Figures 3

Stick Figures 3Stick Figures 3

Stick Figures 3Stick Figures 3

Reprinted from the book GET IT TOGETHER (ISBN # 0-912511-53-2), published by 
EQUALS, Lawrence Hall of Science, Berkeley, CA 94720. © 1989 Regents, 
University of California at Berkeley.

Cooperative Puzzle in Geometry 

Independent Work

Students should also have time to work independently. They might be working on:

• writing their own word problems, which they can later share with a math partner
and then with the full class (see Silverman, Winograd, & Strohaurer, 1992, for a
description of setting up a class for student-generated problems);



• a more extended math project such as the following: Keep track of the time you spend
throughout the week on various activities such as eating, sleeping, TV watching, school,
and so on. On average, what percentage of your time is spent each day on each activity?
Create a pie chart to show how, on average, you spend your day. How does your use of
time compare with that of another family member?; 

• “small interesting word problems” to strengthen their use of concepts already explored
in more extended lessons (e.g., the TOPS problem-solving word decks A, B, C, and D
published in 1980 by Dale Seymour Publications).

In this document, the discussion so far has been about the different types of lessons
and instructional methods used in an effective program. Warranting separate discussion
are various resources that are used throughout the junior math program: manipulatives,
children’s literature, texts, teacher’s resource books, and technology. 

THE EFFECTIVE USE OF RESOURCES THROUGHOUT ALL CLASSES

Throughout all of their math classes teachers will be making use of various resources.
While we will look at each resource in turn, the overriding message in all areas is the
same: effective instruction depends on both the quality of the resource and the skill of
the teacher.

Manipulatives

Manipulatives that are used well are central to effective instruction and have the
capacity to greatly improve and deepen student understanding. Manipulatives allow
students and teachers to discuss something that is concrete; they also offer material upon
which a student can act (Thompson, 2002). For example, students may struggle as
they develop their understanding of the relationship between area and perimeter, and
they may assume that as you increase the area of a figure, you necessarily increase its
perimeter. Square flat tiles provide an effective concrete way to explore this idea. The
teacher may pose a question: “I have a garden that is 6 m long by 2 m wide. I want to
expand the area of my garden without buying extra fencing. Is that possible?” Students
can use 12 square tiles to represent the garden and then experiment with adding tiles
to answer the question. See Figure 5 on the next page.

In addition to providing a medium for experimentation and discussion, manipulatives
can also provide a model or visual for complex concepts. Consider, for example, many
adults’ conception of the Grade 6 concept of the volume of a rectangular prism. When
asked, “How many whole blocks measuring 2 cm by 2 cm by 2 cm could fit in a box
measuring 5 cm by 6 cm by 4 cm?”, many adults use the formula for volume to calculate
6 x 4 x 5=120 cm3 and then divide their answer by 8 cm3 to get 15 blocks. These same
adult students often have difficulty drawing the problem. Only when they build the
box, tape centicubes into 2 x 2 x 2 blocks, and place the blocks into the box do they
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correct their answer. “Oh, I see it now!” (See Figure 6 below.) This concrete experience
with manipulatives helps them to visualize the solution. Manipulatives provide the 
necessary bridge that earlier paper-and-pencil instruction did not. Similar results are
found for junior and intermediate students (Battista, 2003). 

Students learning in classrooms where manipulatives are used often outperform those
in classrooms without manipulatives (Clements & McMillen, 2002). Manipulatives 
by themselves, however, do not generate understanding. In order to use manipulatives
effectively the teacher must first select them with care, asking: “What, in principle, do
I want my students to understand ? [rather than] “What shall I have my students learn
to do?” (Thompson, 2002, p. 246). The manipulatives chosen should be ones that allow
students to use their own informal methods to solve a problem. Different students may
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Figure 6: Building With Manipulatives to Visualize a Problem

Figure 5: Experimentation With Manipulatives to Shed Light on a Challenging Concept



choose different manipulatives, depending on how they think about the problem, and
they should use their chosen manipulative to solve the problem and to explain their
thinking. Manipulatives should be used by students to support their thinking, rather
than by the teacher to demonstrate procedures.

Interestingly, some manipulatives and mathematical tools are more useful when they are
initially constructed by the student. It is through the construction process that students
build a deep understanding of the concept. For example, Marilyn Burns (2001) contends
in her instruction on fraction concepts that of all the lessons she has created, it is the
actual construction of the fraction kit that has proved most effective (the teacher asks,
“How do we make a whole that is divided into two equal pieces? three equal pieces?” and
so on). Researchers agree, proposing that students “reinvent” mathematical manipulatives
and tools such as simple timing devices for understanding the measurement of time
(Kamii & Long, 2003) or rulers for understanding standardized linear measurement
(Young & O’Leary, 2002). 

Manipulatives may be initially constructed by students, they may be “found” materials
(e.g., boxes, paper bags, stir sticks, buttons), or they may be manufactured materials
(e.g., square tiles, centicubes, geometric solids). A detailed list of recommended manip-
ulatives can be found in Appendix A. Manipulatives should be available in every
junior classroom in sufficient numbers to support instruction.

Children’s Literature

Good mathematical problems emerge from a variety of contexts: mathematical contexts,
physical contexts, real-life contexts, and imaginary contexts. Good mathematical
problems draw students’ mathematical attention and offer students opportunities to
experience the pleasure of mathematical insight (Gadanidis, 2004). Literature can supply
wonderful contexts for problems. It can spark the imagination of students – for example,
reading How Big Is a Foot? (Myller, 1990) can engage students in the reinvention of
standardized measurement. It can be used for humour – for example, reading If You
Hopped Like a Frog (Schwartz, 1999) can lead to asking students, “If I were a chameleon,
and a chameleon’s tongue is half its body length, then how long would my tongue be?”
(Wickett & Burns, 2003). Some teachers use centuries-old riddles both to promote
interest in the subject and to develop mathematical thinking and debate – for example,
by posing a riddle like the following: The storyteller and a wise mathematician were
travelling on a single camel in the desert when they encountered three arguing brothers.
The brothers were arguing because their father had left them 35 camels to be divided
among them, with the oldest brother receiving 1/2, the middle brother 1/3, and the
youngest brother 1/9 of the camels. How might the mathematician help the brothers 
to solve the problem? (Bresser, 1995). Literature is a way to bring life and context to 
a problem – a way to help students see mathematics everywhere. 
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Textbooks, Teacher’s Guides, and Other Professional
Resources for Teachers

While the textbook is only one resource among many, it can nonetheless play an
important role in an effective classroom. In-depth learning is more likely to happen
when texts and curriculum are in alignment and concentrate on a few topics and the big
ideas or important mathematics in these topics. Good textbooks that support effective
instruction have a number of common characteristics. They cover fewer topics but do
so more deeply (Ma, 1999). Good texts have lessons that are based on a progression of
mathematical development. They outline tasks that encourage students to think more
deeply about a given topic, to make connections among topics, and to move towards
increasing efficiency and abstraction. In addition, good texts, like good instruction, allow
and encourage students to make sense of the mathematics in their own way as well as
to use their own methods of recording solutions. Finally, good texts use engaging,
thought-provoking contexts for students. 

Good texts come with guides that support the teacher’s own knowledge of mathematical
content and methods of instruction (Ball & Cohen, 1996). This is crucial, because
teachers may want to use the same lesson but in very different ways, depending on
their own understanding of the purpose of the lesson. Such guides also give teachers
background information on the various student strategies they might see and how
these fit into an overall continuum of mathematical development. Finally, textbooks
and guides support a variety of methods for assessment, with a focus on observation,
interview, and conferencing. 

Many other teacher resource books meet many of the criteria of good texts but do so
without an accompanying student text. These books or “replacement units” can often
offer the detailed and careful development of one concept that may be beyond the scope
of a text, which must cover all strands. Teachers should have access to these books, since
one textbook is not sufficient to implement all aspects of an effective mathematics program.
A recommended list of these books can be found in Appendix B, in the section entitled
“Specific Content Area Resources and Units”. 

Technology

Technology that is used well can play an important role in the junior classroom.
Exploring mathematics with technological applications should be an integral part of
the junior mathematics program. Many junior students use technology on a daily basis
to investigate and to communicate ideas. Technology is part of their world and the world
of their future (deSessa, 2000). Technology is not meant to replace mathematical thought
but to expand it. Mathematicians themselves use technology. In mathematical activities,
tools not only expand cognitive capabilities, they transform them (Wersch, 1985), and
computer tools have become as fundamental to the work of professional mathematicians
as the protractor was to the work of the ancient geometers.
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In the junior years, technology can be incorporated to support the development of student
understanding in the following ways:

• It can support students’ sense making by providing an environment for investigations.
For example:

– Calculators can be used to look at number patterns and to develop number sense.

– Spreadsheets can be used to organize and display data, and also to study number
patterns and shapes.

– Online applets can be used at home or in the classroom. They allow students to
carry out repeated experiments and to explore visual mathematical relationships.

• It can allow students to develop critical-thinking skills through analysing and 
comparing many examples.

• It can support the development of diagrammatic reasoning by providing visual 
representations.

Technology changes the mathematics that students do and the way that students do
mathematics. It changes teachers’ priorities about what needs to be taught. For example,
in the twenty-first century it is not necessary for students to do extensive calculations by
hand, but it is necessary for them to develop deep number sense (Reys & Arbaugh, 2001).
Technology also allows students to “play” with ideas – both numerical and geometrical –
and to ask questions and make hypotheses about their world that they could not before.
Through self-directed discovery, students gain access to new levels of mathematics
(Sinclair, 2004) and develop their curiosity and a willingness to consider various options.
This suggests that during the junior years, experiences with technology should include
opportunities for free exploration.

At the same time, the successful use of technology in a situation does not necessarily
guarantee that expertise will be transferred to another medium; for example, students
who are able to create graphs on the computer will not necessarily understand how to
use them in other contexts. Teachers must provide opportunities for students to link
the actions carried out in one environment to the other. In fact, “research shows that
computer activities yield the best results when coupled with suitable off-computer
activities” (Clements & Sarama, 2002, p. 342). 

Calculators warrant some additional discussion. Research findings to date indicate 
that unrestricted access to calculators does not adversely affect student performance 
in mathematics (Ruthven, 1999). Teachers can help students move towards the 
appropriate use of technology by:

• including questions, activities, and investigations that use calculators to support
realistic problem solving. For example, calculators “can enable pupils to tackle a
problem using direct strategies which call for computations beyond their current
capabilities; and can also support indirect strategies based on trialling or building 
up towards a solution” (Ruthven, 1999, pp. 203–204). 

EFFECTIVE MATHEMATICS INSTRUCTION 29



• having technology readily available, so that students move towards using it in a natural
way (e.g., use calculators as required to carry out complex calculations);

• using both calculators and other technology in paired work to encourage the 
communication and development of mathematical ideas; 

• restricting access to calculators only in specific instances when the main aim is 
to help students hone mental and written computational skills. 

In particular we recommend the use of a two-line display calculator that allows
students to keep track of their earlier entries. 

Resources in Ontario French-Language Schools 

It should be noted that the limited number of French-language text, literature, and software
resources in junior mathematics poses a particular challenge to the French-language school
system. Teachers in that system must rely more heavily on their knowledge of the topic
and the pedagogy to meet the needs of their students and to be effective in the class-
room. It would not be realistic to try to match for the French-language system every
learning resource that the marketplace makes available to the English-language system.
The ministry should aim, however, to provide sufficient financial support, in addition
to what has been traditionally available to French-language schools, for the development
of a limited number of high-quality junior mathematics learning resources and for 
sustained teacher professional development to accompany those resources. 
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Factors Affecting the Junior Math Learner

Mathematics instruction 

Attitudes towards math,

beliefs about math

Assessment and evaluation  

Parental attitudes  

Teacher’s attitude,  

teacher’s knowledge

Background (socio-economic  

circumstances, gender,  

language and culture, special needs,  

limited mathematical foundation) 

Peer group influence 

Instruction plays a central role in the junior student’s learning and understanding of
mathematics. However, it is not the only factor affecting the student’s level of mathe-
matical literacy. The junior student enters the classroom not as a blank slate but as a
maturing student with an extensive experience of mathematics both inside and outside
the classroom. Students have their own ways of viewing school and mathematics that
derive in part from their identities as friends or students, and family or community
members. What a student brings to the classroom – cultural background, gender, family
background – plays a role in how that student experiences and learns in school generally
and in mathematics specifically. In the graphic below, some of the factors that affect
the junior mathematics learner are identified. In this chapter, we will consider those
factors that can affect the student’s development of mathematical literacy quite apart
from instruction.
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3 Other Factors Affecting
the Junior Math Learner 



ATTITUDES TOWARDS MATH AND BELIEFS ABOUT MATH

The junior years have a significant impact on whether students see themselves as capable
of mathematics as well as on whether they view mathematics as an interesting subject
worth pursuing. A student’s attitude towards mathematics and capacity for mathematics
are inextricably linked; each affects the other (Middleton & Spanias, 1999). In their
review of two decades of literature on motivation and mathematical achievement
Middleton and Spanias found that “motivations toward mathematics are developed early,
are highly stable over time and are greatly influenced by teacher actions and attitudes”
(p. 80). During the junior years students can develop a narrow view of mathematics as
a set of procedures to be learned and memorized. For some students, math is viewed as
“…usually strict. You have to do this, this way, because everybody’s already found out
the right way” (Gadanidis & Schindler, in press). However, narrow beliefs like this
need not prevail. 

Effective instruction that is focused on problem solving, a range of solution methods, and
student communication of ideas often results in a more positive attitude towards mathe-
matics, a less narrow view of the subject, and a stronger understanding of mathematics
than is the case when instruction is focused on the transmission of rules and procedures
(Cobb et al., 1991; Wood & Sellers, 1997). When teachers are able to create a genuine
community of mathematics learners – a risk-free environment in which discussion is
encouraged and students feel comfortable sharing their ideas – then students are more
likely to find that mathematics can be an interesting and enjoyable activity. Their views
about mathematics and what it means to do mathematics will change.

BACKGROUND

All students deserve to become mathematically literate regardless of gender, socio-economic
background, language, cultural background, learning ability, or previous mathematics
experiences. Instruction must address the needs of students from a wide range of back-
grounds. As Van de Walle and Folk (2005) assert, “It is no longer reasonable to talk
about the ‘regular classroom.’ It is even more difficult to talk about the ‘average child’”
(p. 458). The type of instruction described in this document is designed to allow teachers
to take into account these differences and value who the student is and what the student’s
background and previous knowledge are. It should be recognized, however, that certain
situations require either a modification of the methods we have outlined or more than
what is outlined. Each of these situations is addressed in the following pages. 

All students benefit from good instructional methods, which can be instrumental in
helping them overcome real or perceived disadvantages that they may have as a result of:

• living in impoverished circumstances;

• having a different language or different cultural background;

• having special needs.
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Socio-economic Circumstances

Teachers have been successful using problem-oriented methods in schools in all types
of neighbourhoods, regardless of the socio-economic circumstances of the students. 
For example, in her work comparing “problem-oriented” with traditional “procedural”
instruction in two low-income neighbourhood schools, Boaler (2002) found that, after
three years in the problem-oriented school, students obtained a significantly higher
level of achievement on a range of assessments, including the national examination, at
age 13. Furthermore, she found more equitable gender achievement. Boys in the proce-
durally oriented school obtained significantly higher grades than the girls did, whereas
there were no gender disparities in grades at the problem-oriented school – all students
performed better on average. We do not wish to diminish the challenge that problem-
oriented instructional practices may place on a teacher in a particular classroom, or
with particular students; rather, we stress that, despite obstacles, these methods have
demonstrated strong results in all types of classrooms and should be made available 
to all students. 

Gender

There has been extensive research on the topic of gender and mathematics. On the one
hand, Sanders and Peterson (1999) summarize the research regarding girls’ mathematical
achievement by stating: “What was once an alarming gender gap in math achievement
and participation has been reduced to a few percentage points . . .” (p. 47). In school
achievement girls now typically fare as well as boys in mathematics – a dramatic change
from earlier times. However, for students who go on to university there remains a discrep-
ancy, and a growing one at each level in mathematics, in favour of men (Burton, 2004).
Whether or not this discrepancy has roots in the junior grades is speculative, but it
cannot be entirely ignored. 

On the other hand, there is also a growing concern that in fact boys are not faring as
well in schools as they might (Ravitch, 1998). Boys are overrepresented in schools in
behavioural classes, learning disability classes, and special needs of all sorts (Lajoie, 2003).
The contention from some groups is that boys’ stereotypical behaviour is not necessarily
conducive to learning through traditional modes of instruction (e.g., sitting quietly for
long periods). We feel that it is important to be aware that there are differences in how
students do, understand, and think about mathematics. The methods that have been
suggested in this document begin with this premise, which – while not a panacea –
acknowledges the differences that students bring to the classroom. It may be, however,
that teachers must go beyond this, and also pay careful attention to the context of
problems: Do they engage all the students? Do students of both genders view mathe-
matical inquiry as a positive and interesting activity? 
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Language and Culture

Teachers can make effective use of problem-oriented methods with specific modifi-
cations to better address the needs of students from different cultures or languages.
Instruction that includes a student’s culture in different ways is more likely to engage
the student. In one example, students began with narratives of their home experiences
in their own language as a basis for mathematics in the classroom (Lo Cicero, De La Cruz,
& Fuson, 1999). The teachers and students used student stories and pictures from home
to build math problems that related to the students’ everyday lives but served equally
to advance their mathematical knowledge. 

Learning mathematics in a second language (whether as an ESL student or an English-
speaking French immersion student) can initially add a layer of difficulty in mathematics.
The same techniques used to support literacy skills can be used in the development of
mathematics – for example, working where possible in both languages, making use of
manipulatives and diagrams to communicate, working with a fellow student in the same
original language. In the case of students who have withdrawal services for language
development, having them write mathematics word problems (to share with other 
students) can serve as a link between the instructional experience during withdrawal
and that of the regular classroom. 

Bresser (2003), in his work with ESL students communicating mathematical ideas,
suggests that teachers: 

• allow wait time for students’ responses;

• pose problems in familiar contexts;

• connect symbols with words;

• have students share with their partner first, then with the whole class;

• use “English experts” (students with the same native language but a stronger 
grasp of English); 

• have students “retell” another student’s explanation.

In French-language schools, the linguistic support programs Actualisation linguistique
en français and Perfectionnement du français (see the curriculum policy document for
ALF/PDF, 2002) play an important role in ensuring that students acquire the necessary
level of skills in the French language in order to fully understand the mathematics concepts,
share their ideas, and communicate their thinking. The mathematics learning and teaching
approaches put forward in this report emphasize the communication and sharing of
mathematical thinking in a safe and respectful environment. The Ministry of Education
is encouraged to develop support materials that would facilitate the implementation of
the ALF/PDF curriculum guidelines, particularly as they apply to mathematics in the
primary and junior grades. 
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Special Needs

Students with learning disabilities will benefit from problem-oriented instructional
methods. Students with learning disabilities are often relegated to a narrow instruction
in mathematics as simple rules and procedures (Woodward & Montague, 2002). Special
education typically places considerable emphasis on rote learning and mastery of math
facts and algorithms for basic operations rather than on problem solving.

Narrow procedural knowledge will not be sufficient for students with special needs in
their future schooling or work. Like all students, students with learning disabilities will
benefit from a problem-solving approach focused on making sense of mathematics. Beyond
this approach, students with specific disabilities may need additional attention. Sliva
(2004) presents different types of learning problems and how they may affect mathe-
matical development; her observations are summarized in Figure 7 on pages 36 and 37.

For students with special needs, additional support in some foundational math concepts
is often necessary, and recommended, as the mathematics they are expected to learn
becomes increasingly more complex through the junior grades. Instruction needs to begin
with what students understand. Teachers may need to make use of primary mathematics
concepts, such as place-value understanding and counting principles, which are discussed
in the series of guides to effective instruction in mathematics for Kindergarten to Grade 3
published by the Ministry of Education. When teachers are able to recognize and identify
the gaps in students’ understanding, they can choose appropriate activities and problems
to help close those gaps.

Students who have needs that cannot be addressed adequately in the regular program
should have access to additional support in mathematics, including the support of special
education teachers with specific training in mathematics education. The mathematics
instructional training provided for these teachers should include an examination of
some of the big ideas in primary mathematics that students must understand in order
to progress – for example, the decomposition and recomposition of numbers.

While the field of addressing learning disabilities within a problem-solving framework
is relatively new, programs that are being developed are worth investigating. See, for
example, the primary division program Mathematics Recovery (Wright, Martland,
Stafford, & Stanger, 2002).

Special consideration should be given to all students with special needs, including gifted
students. Gifted students also need to be provided with interesting, rich, and challenging
programs. Using a balanced approach to instruction, and teaching math concepts through
problem solving, teachers can provide the students in their classes with problems that
have entry points for all learners. Problems should be sufficiently rich to engage gifted
students. Gifted students may require additional extensions or enrichments that will
help them further develop their understanding of the mathematical concepts being
explored by the class.
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Figure 7: Types of Learning Problems and Their Possible Effects 
on Mathematical Development

Type of Learning Problem Possible Skill Areas Affected

Spatial perception – dealing with the directional aspects of 
mathematics (e.g., solving problems 
involving single-digit addition [up-down],
regrouping [left-right], aligning numbers, or
using a number line) (Miller & Mercer, 1997)

– understanding the concept of fractions, 
writing fractions, writing decimals, discerning
differences in size and shape 

Reversals – regrouping and transposing digits 

Figure-ground perception – maintaining the sense of a problem and 
not mixing up parts of different problems

– reading a calculator

– reading multidigit numbers

– copying symbols properly 

Visual discrimination – identifying symbols

– gaining information from pictures, charts, 
or graphs

– being able to use visually presented material
in a productive way

– telling the difference between a quarter and 
a nickel, the numbers 6 and 9, and the small 
hand on a clock and the large one

– using many mathematics skills (e.g., in 
measurement, estimation, problem solving, 
and geometry)

Auditory processing – hearing a pattern in counting

– deciphering numbers that are spoken 
(e.g., 30 and 13)

– performing oral drills

– identifying ordinal numbers

Motor ability – presenting legible work (However, the 
teacher must not infer that a messy paper 
indicates that the student does not know 
his or her mathematics.) 



Limited Mathematical Foundation

In addition to students identified as having learning disabilities, there may be other
students, harder to identify, who are struggling quietly because they do not have a suf-
ficient understanding of fundamental mathematical concepts. Teachers who focus on
the oral communication and explanation of ideas can make use of their discussions with
students, along with individual interviews, to identify struggling students and prevent
them from “falling through the cracks”. Such students will benefit from a program based
on solving problems with a range of entry points and solutions that can be reached through
a variety of strategies. When teachers use paired or group work, they may want to place
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Type of Learning Problem Possible Skill Areas Affected

Expressive ability – communicating about mathematics, 
both in writing and orally 

Receptive ability – connecting vocabulary words with an 
understanding of mathematical concepts 
(e.g., first, greater than)

– understanding words with multiple meanings
(e.g., sum, times, difference)

– following directions and solving word 
problems

– ignoring irrelevant numerical and linguistic 
information in word problems 

Cognitive and – selecting an appropriate strategy

– being aware of basic skills, strategies, 
and resources necessary to complete 
mathematical tasks

– organizing information

– monitoring problem-solving processes

– evaluating problems for accuracy

– generalizing strategies to new situations 

Attitude – believing that he or she will be good 
in mathematics

– thinking on one’s own and taking risks

– believing that he or she will be successful 
at learning important mathematics concepts

metacognitive abilities



these students with other students at a similar level of understanding. Students in such
pairings will have an opportunity to explain, test out, and develop their own ideas,
rather than being shown and told what to do by a stronger student. 

PEER GROUP INFLUENCE

The peer group plays an increasingly important role in students’ attitudes towards school
generally, including their attitude towards mathematics. As students move into middle
childhood and the beginning of adolescence, peer groups with distinct norms and social
structures emerge; students often prefer the company of their peers to that of adults.
To acquire acceptance into a peer group requires a certain amount of social approval,
and this social approval is contingent upon conformity to the norms of the group.
Depending on the group, this peer pressure can become positive or negative, either
improving students’ participation in school or reinforcing negative social behaviours such
as misconduct in class. Students who feel socially accepted have higher self-esteem, and
higher self-esteem is correlated with stronger academic performance than low self-esteem
(Birch & Ladd, 1997). Establishing a classroom community where positive peer influence
is encouraged and expected is important for the learning in this age group. Valuing the
contributions of all students and expecting students to respect others and themselves help
to develop positive peer interactions that in turn promote positive peer influence.

PARENTAL ATTITUDES

Parents should be included in their children’s mathematics education in a meaningful way.
In her review of the research on parental involvement in education in Britain, Merttens
(1999) asserts that “whatever we do inside the school gates will never be as effective as it
should be unless we turn our attention to what happens on the outside!” (p. 79). Indeed,
many researchers feel that it is the parents6 who are the single biggest factor in a child’s edu-
cational success. Parents foster a positive attitude towards mathematics in their children by
demonstrating an interest in math, modelling perseverance in problem solving, and high-
lighting mathematics as it is encountered in their workplace and in the home environment.
A positive attitude on the part of the parents supports the teacher’s classroom efforts. 

Including parents meaningfully means making them feel comfortable and welcome 
in their child’s school. This may be particularly important in the case of mathematics,
given that many parents’ experience of mathematics in school may have been less than
positive and that they are now faced with new mathematical content (e.g., probability)
taught in unfamiliar ways.
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There are effective ways that teachers and schools can forge strong links with parents
that benefit all involved. Many teachers already make good use of games and interesting
problems for homework and optional home activities. In addition, as students share at
home the problems that they are working on in school, parents will have their own ways
of solving these problems, and these ways can be included in school discussions. For
example, Ms. H addresses this issue in her classroom. 

After working on the marbles problem Ms. H had three students report that
they had learned another way to solve the problem at home. As one student,
confided, “I showed my dad my way and he showed me his way. I didn’t under-
stand his and he didn’t understand mine!” Ms. H capitalized on this confidence
to look at what was similar between Leah’s way and her dad’s way of solving a
division problem. Some of the students were able to find the link between the
two methods (shown below). Other students were unsure. Ms. H pursued the
comparison because she wanted to make sure that a connection was made
between what was happening in her class and what parents were sharing at
home. She did not want a disjunction between math at school and math at
home; instead, she wanted one to strengthen the understanding of the other. 
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A Comparison of Leah’s Division Algorithm and Her Father’s “Standard” Algorithm

Homework tasks must provide meaningful experiences for both children and parents.
Activities should be engaging mathematical experiences that highlight mathematics in
the students’ environment. Whether students are playing a game requiring strategy
with family members or friends or completing an assigned task, their mathematics
homework should be meaningful, enjoyable, and productive.





ASSESSMENT AND LEARNING

Effective assessment and evaluation practices have the capacity to greatly strengthen
a student’s mathematical literacy. Although assessment and evaluation are used for a
range of reasons, their fundamental purpose – and the purpose against which all other
purposes should be weighed – is to support students’ learning and understanding of
mathematics (Wilson & Kenney, 2003). As the National Council of Supervisors of
Mathematics (NCSM) contends: “In order to develop mathematical proficiency in all
students, assessment needs to support the continued mathematical learning in each
student” (1997, p. 1-11). This is an achievable goal. 

Well-constructed and well-implemented assessment plays an essential role in the
improvement of student learning. Black and Wiliam (1998) found in their review of
studies on assessment and student achievement that in classrooms where teachers used
formative assessment (i.e., assessment as an ongoing part of learning), students achieved
at significantly higher levels than in classrooms where this was not a feature of instruction.
They concluded that the achievement gains were “larger than most of those found for
education interventions” (p. 141). The gains came from classes with effective assessment
practices, which will be discussed in this section. Black and Wiliam also distinguish
between assessment and evaluation. Assessment is an ongoing examination of what students
know and can do, while evaluation is the interpretation of assessment data and, if required,
the assignment of a grade. Although Black and Wiliam found that good assessment was
linked with improved learning, this was not the case in classrooms where there was an
overemphasis on evaluation in terms of grades. Where the emphasis was on evaluation,
students focused on obtaining the grades, often by superficial means, rather than by
focusing on learning deeply. 

Effective assessment and effective instruction are not necessarily different activities and
in fact should become nearly indistinguishable (Stenmark & Bush, 2001). Assessment
is an ongoing part of the learning-teaching process and includes regular opportunities
for students to demonstrate their learning (Expert Panel on Early Math in Ontario, 2003).
As Fosnot and Dolk (2001b) suggest, “[A]ssessment must be dynamic in that it evaluates
movement – the journey. But it must also be dynamic by being directly connected to
learning and teaching” (p. 129). 
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PURPOSES OF ASSESSMENT

The teacher undertakes the assessment process by first determining the purposes of the
assessment, which are to:

• determine the students’ prior knowledge;

• know what students have learned on a given topic; 

• make decisions about future lessons;

• identify individual difficulties; 

• obtain information for discussion with the student, their parents, 
and the administration. 

Teachers use assessment for diagnostic purposes, to determine what students know and
therefore what they need to learn. Teachers also use assessment to understand what students
have learned, for the purpose of evaluating their own lessons, determining where the
next lessons should go, and later being able to report on learning. Teachers assess student
learning to provide information on the class as a whole and on individual students. The
whole-class information allows teachers to know what the students in general are learning
or have difficulty learning and therefore helps guide the direction of future lessons. This is
ongoing or formative assessment as a unit progresses. The teacher is also examining indi-
vidual assessments to determine what individuals know and need to learn. We do not
think that it is useful, or indeed possible, to have any instrument (e.g., a diagnostic
developmental continuum7 or test) that would tell teachers that, on the basis of a given
sample of work, a student is at an exact stage of learning (Wilson & Kenney, 2003).
While such continuums are extremely useful and are one key to informed assessment
and instruction, they are only part of the picture the teacher will use. A continuum
cannot “know” a student: that is the job of the teacher. A teacher’s observations of stu-
dents in problem-solving situations will reveal considerably more about the students’
understanding of math concepts, their sense making in math, and their individual
strengths and weaknesses.

METHODS OF GATHERING INFORMATION FOR ASSESSMENT

In general, assessments should be informative, non-intrusive experiences and should not
make students feel less than they are. Assessments should encourage students to show
what they know and can do, rather than focus on what they do not know or cannot do.
We agree with the recurring call over the last five decades for increasing the use of more
informal methods of assessment – observation (of oral and written work) and discussion

TEACHING AND LEARNING MATHEMATICS42

7. A diagnostic developmental continuum is an assessment aid in which students’ methods of solving
problems are described and organized into a progression. The continuum is accompanied by suggested
ways of fostering students’ progress in mathematical concept development.



(with the student) – and relying less on formal paper-and-pencil tests (Lambdin, 1993).
As students and the teacher communicate about their ideas and strategies, teachers can
obtain useful information about student understanding and thinking.

In addition to ongoing informal assessment, teachers can also make use of various pieces
of information, including mathematical tasks, a portfolio of work, mathematical projects,
and short tests that can be accumulated over time (for a sample of these, see Stenmark
& Bush, 2001). In their overview of the research, Wilson and Kenney (2003) summarize
the characteristics of good tasks. They should “be novel and varied in interest, offer 
reasonable challenge, help students develop short-term goals, focus on meaningful aspects
of learning, and support the development and use of effective learning strategies” (p. 53).

Finally, teachers can also gain information through short interviews and conferences
about the students’ work.

USE OF ASSESSMENT INFORMATION

As teachers assess, they gain information about both the individual child and the class
as a whole. They then use this information to inform classroom practice and determine
where to head in future lessons. This is a significant aspect of effective assessment. Teachers
should continually adjust their program in response to the information that they learn
through assessment. If assessment data have no impact on teacher action, then assessment
will not be linked to student improvement (Black & Wiliam, 1998). 

Teachers also make use of assessment information to speak individually with students.
Students must be involved in the assessment process, getting feedback from the teacher
and taking part in their own goal setting in response (Stenmark, 1991). Including stu-
dents in their own formative assessment helps them to develop responsibility for their
work and promotes their autonomy as learners. 

USE OF THE ACHIEVEMENT CHART

The achievement chart on page 9 of the 1997 Ontario mathematics curriculum policy
document offers teachers a way to think of their mathematics program across the categories
of Problem Solving, Understanding of Concepts, Application of Mathematical Procedures,
and Communication of Required Knowledge. We suggest that teachers do not try to
give separate grades for the four categories. These are not separate, measurable parts or
“constructs”. These are intertwined parts of mathematics that are more accurately assessed
as a whole (Wolfe, Childs, & Elgie, 2004). Sometimes the “application of procedures”
category is given disproportionate weight among the four categories when a student’s
work in mathematics is being assessed; the student’s work should be assessed on the
basis of criteria in all four categories. 
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How will Ms. H assess her students’ understanding of division and multipli-
cation? She has seen how her students solved the problem presented, having
looked at their written work, having listened to their discussion over the two-
day lesson, and having observed their work in later lessons when they tackled
a number of other problems. As students progress throughout this unit, Ms. H.
is assessing their discussion and work by asking herself various questions.
Do they understand division (when to use it, how to deal with the remainder)?
How do they solve the problems (e.g., are they at an earlier stage of multiplying
up or a later stage of using an efficient algorithm?) Do they solve the problems
accurately? If not, what types of errors do they make? Ms. H. will use all of this
to think about what the students understand and where they should be headed
in later lessons. After students have done more written work and taken part
in further discussion, Ms. H. will ask them to complete a task on their own:
“Your task is to write three division problems. First, write a problem you con-
sider to be easy to solve. Next, write a problem you think is of medium dif-
ficulty. Finally, write a problem that you feel is hard. Solve all three” (Wickett
& Burns, 2003, p. 252). She will use all of this to evaluate their knowledge
for the purposes of reporting. 
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Supporting mathematics education and learning is a shared responsibility that
encompasses all members of the educational community, including the Ministry 
of Education, district school boards, principals, lead teachers, teachers, faculties 
of education, and parents. All partners play a vital role in ensuring that optimal
conditions for learning and the necessary resources and professional development
are present at all levels. 

PROFESSIONAL DEVELOPMENT IN MATHEMATICS EDUCATION

Becoming an effective mathematics teacher can be a complex, rewarding, and yet chal-
lenging endeavour, particularly as teachers undertake the kind of instruction described
in this report. The effects of this new situation can be summarized as follows:

• Teachers are asked to teach in a way that they themselves may not have experienced
and have not likely seen in classroom situations. 

• Teachers need a more extensive knowledge of mathematics than they have previously
needed as teachers and as students. 

• Teachers need to develop deep and flexible knowledge of pedagogy in order to work
effectively with students’ thinking and alternative strategies.

• Teachers may find it difficult to carve out the recommended time of one hour a day,
given the number of curriculum expectations (the required knowledge and skills that
students must develop and demonstrate over the course of the year in all subjects), and
will require support in incorporating the big ideas into their planning and reporting. 

• Some parents, students, and principals may have a more traditional view of what
good instruction looks like and may need information on why and how mathematics
instruction has changed.

For professional development to be effective, meaningful, and relevant, it must help
teachers address each of these issues. 
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CHARACTERISTICS OF EFFECTIVE PROFESSIONAL DEVELOPMENT

1. Effective professional development is focused on specific goals that are clearly
connected to mathematics and mathematics teaching. Professional development should
be long-term, with several short-term, realistic, manageable goals in mind. Mathematics
teachers need extended experiences of doing mathematics and working with the new
methods. Professional development focused on the teaching and learning of specific
mathematics content is more effective than more general professional development. In
their comparisons of the research on professional development, both Kennedy (1998)
and Cohen and Hill (2001) found that teachers who took workshops that were extended
in time and focused on examining students’ mathematical work reported more effective
classroom practice. In contrast, teachers who took workshops more loosely focused on
hands-on activities, gender, cooperative learning, and other tangential topics were less
likely to report such practices.

2. Effective professional development supports the development of teachers’ knowl-
edge of mathematics. Teachers whose understanding of mathematics has been deepened
are much more likely to help students make important mathematical connections, to
teach to the big ideas, and to see the mathematical value of particular problems. Teachers
must understand their subject matter deeply in order to teach effectively. Professional
development needs to create mathematics experiences that cause teachers to reflect on
their knowledge and beliefs and to see mathematics and mathematics teaching in a new
light (Gadanidis, Hoogland, & Hill, 2002). When such moments of epiphany occur,
images of mathematics education – such as curriculum documents, classroom experiences,
ideas from professional development workshops, journal articles, and so forth – shift
and something new is seen, something that was not apparent before. As one teacher
commented, “I feel like [this experience] has cleaned my spectacles and I am reading
the [curriculum] document with new vision” (p. 1612). 

3. Effective professional development supports the development of teachers’ knowledge
of how children learn mathematics (Garet, Porter, Desimone, Birman, & Yoon, 2001).
Teachers may find it a challenge to implement some recommendations for effective
instruction when they have limited information and training about how children best
learn mathematics, how students might solve problems, what their typical strategies might
be, and what their thinking is. When teachers have the opportunity to learn about
children’s mathematical development, they respond more effectively to the mathematical
needs of their students, know how to work with student ideas, and make the most of a
given math moment. This professional development should include either video data
or actual classroom settings wherein teachers can see, as well as read about, students’
mathematical development in problem-based programs. 

4. Effective professional development is active learning – it gives teachers the
opportunity to try new ideas and discuss them. Effective professional development
offers teachers ongoing opportunities to try new ideas in their classrooms and to share
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and discuss their teaching and their reflections on their teaching in a professional, col-
laborative community. The purpose of the professional development of teachers is to
improve student learning and understanding of mathematics. For teachers, this means
trying out new strategies with their students. For significant change to occur in teachers’
beliefs and practice, teachers need experiences in which they engage in practical inquiry
and reflection about mathematics and mathematics teaching (McGowen & Davis, 2001;
Stipek, Givvin, Salmon, & McGyvers, 2001). Discussion among teachers who teach the
same grade and share many experiences and issues can help teachers make sense of their
experiences and feel less isolated. This analysis of and reflection on their practice may
take the form of talking with others, keeping a journal, engaging in action research
(Darling-Hammond & Ball, 2000), or engaging in collaborative research (Bednarz, 2000).

5. Effective professional development includes support from knowledgeable others.
While teachers can benefit from school-based professional development, this model 
is often more effective when stimulated by an elementary mathematics consultant/
coordinator or resource person. The leader should have the specialized knowledge of
mathematics teaching and learning and the experience in the elementary context to
help to promote effective development. The leadership and input from a mathematics
consultant/coordinator or resource person is particularly important in mathematics, an
area in which many teachers and administrators may feel uncomfortable and may lack
deep knowledge of both content and pedagogy. 

6. Effective professional development values teachers as professionals. Teachers are
professionals who are most effective when they are treated as such. Effective professional
development must have a range of entry points for teachers who have varied needs.
The professional development models should build on what teachers already know.
Teachers should be able to choose the professional development that is most appropriate
for their own situation and their own classroom context. Teachers need to be trusted 
in the same way that other professionals, such as lawyers, doctors, and architects, are
trusted (Fullan & Connelly, 1987).

These characteristics are summarized in the following list:

Characteristics of Effective Professional Development

Effective professional development:

• is focused on specific goals that are clearly connected to mathematics
and mathematics teaching;

• supports the development of teachers’ knowledge of mathematics;

• supports the development of teachers’ knowledge of how children
learn mathematics;

• is active learning – it gives teachers the opportunity to try new ideas
and discuss them;

• includes support from knowledgeable others;

• values teachers as professionals.
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ROUTES TO EFFECTIVE PROFESSIONAL DEVELOPMENT

FOR TEACHERS IN ONTARIO

There are a variety of different routes that teachers can consider to strengthen their
instructional capacity in mathematics. These include initiatives at the district, school,
university, and professional levels. The most effective professional development routes
are those that meet the characteristics outlined in the list on page 47.

Ministry and Board-wide Initiatives

Teachers can take advantage of a range of professional development activities offered by
the ministry and by their boards. During the 2003–04 school year, the ministry sponsored
high-quality, intensive professional development for lead teachers in Kindergarten to
Grade 3 mathematics. Some boards made this same training available to all their
Kindergarten to Grade 3 teachers. A version of the training was also offered free to all
elementary teachers, Kindergarten to Grade 3, in the ministry’s Summer Program 2004.

A similar program of intensive professional development is expected to begin in the
2004–05 school year for lead math teachers in the junior level. Boards should attempt
to extend the training to as many junior grades teachers as possible, and teachers can
take advantage of offerings for professional development in future Summer Programs. 

School-Based Initiatives 

Schools offer various ongoing in-service projects for teachers, in particular, the development
of collaborative teams of teachers working either on their own or with an outside expert. 

Professional Association and Federation Initiatives 

Some professional associations – for example, the Ontario Association of Mathematics
Education (OAME), the Ontario Mathematics Coordinators Association (OMCA), and
the National Council of Teachers of Mathematics (NCTM) – and teacher federations
offer a range of workshops, courses, and resources in elementary mathematics. Some
teacher federations provide additional support for teachers attending courses offered
throughout Ontario and other jurisdictions. The OAME also offers conferences regionally
and provincially and other forums for professional development.

University-Based Courses 

At the university level teachers can enrol in:

• Additional Qualifications courses in primary/junior mathematics. Because these
courses involve a significant investment in time and monies, some boards have
financially supported teachers to take them. In addition, some boards have worked
with universities that are offering these courses to tailor the courses to the needs of
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their teachers. The lack of access to such courses is a particular concern for the
French-language community – no Additional Qualifications courses in mathematics
are available in the French language. 

• A masters of education degree with a focus on mathematics education. Enrolment
offers teachers an opportunity to carry out research or portfolio development in 
the area of mathematics.

Joint Board and University Initiatives

Teachers can take part in professional development research projects created through
agreements between local universities or researchers and specific schools or boards of
education. Typically these projects are part of ongoing research initiatives originating in
the universities. The projects include teacher in-service and research on instruction and
learning within their classrooms. These projects could be expanded upon and further
viewed as another route to accreditation and continuing education for teachers.

DEVELOPING CAPACITY FOR MATHEMATICS IMPROVEMENT

IN ONTARIO: RESPONSIBILITIES

Professional development is the key to strong mathematics instruction. The instructional
practices outlined in this document will not happen without sufficient support in the
form of effective professional development for teachers. The requirements of professional
development may be greater in mathematics than in other subject areas at the junior
level because of the dual necessity of developing a strong knowledge of mathematical
content and developing new instructional methods. 

Effective professional development is a sustained commitment by all members of the
system. If professional development is to support teachers, it must be sustained. Short-term
professional development is not enough to support teachers who are undertaking the
type of instructional changes outlined in this document. It must happen regularly and
must take place over extended periods of time (Glickman, 2002). Since teachers are to try
out new ideas and strategies, they may experience moments of celebration and also frustra-
tion. Therefore they need to have ongoing support that provides a forum for analysing,
discussing, and considering how these ideas and strategies work in the classroom. Genuine
improvement in mathematics instruction takes time and support. 

Effective professional development is valued and supported by school and school
district administrators. Senior administrators and principals are the key to creating 
the conditions for the continuous professional development of teachers and, thus, for
classroom and school improvement (Fullan, 2001, pp. 137–150). Principals and other
administrators need to be actively involved in the professional development process
and should make informed decisions about professional development at the board and
school levels (Burch & Spillane, 2001; Payne & Wolfson, 2000). Principals and senior
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administrators also need professional training in what sound early mathematics experiences
should look like; this training should be specifically tailored to the needs of principals
and other leaders in the system. An effective professional development program that is
designed to build awareness and support for mathematics initiatives includes development
for principals and senior administrators. 

The following section outlines roles for the various education partners and introduces a
new role, mathematics facilitator, which is recommended by this panel. 

Ontario Board Leaders

Success in mathematics must be an identified goal in all school boards across Ontario.
Board leaders play an important role in articulating a clear vision and priority regard-
ing mathematics education across their school districts. These board leaders provide
leadership in:

– creating a vision and focus for mathematics;

– fostering leadership within;

– allocating resources.

Creating a Vision and Focus for Mathematics

A key role of the board leader is to promote and establish a shared sense of vision 
and purpose within the school district. In this role, board leaders:

• facilitate a system-wide commitment and priority to mathematics education;

• communicate a shared vision of mathematics instruction across the board and assist
principals in developing a shared vision within their schools;

• work to minimize competing priorities in order to establish a focus on mathematics;

• ensure the alignment of board goals with provincial-, school-, and classroom-level goals.

Fostering Leadership 

Strengthened leadership capacity is a prerequisite for successful innovation. Establishing
leaders in mathematics education is essential if professional development is to be imple-
mented and sustained and teacher capacity and students’ mathematical literacy are to
be increased.

Board leaders:

• establish board-level mathematics program support, with personnel who have extensive
knowledge and experience in elementary mathematics;

• establish the role of mathematics facilitator (described later) within a family of schools
to support administrators and lead teachers; 
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• work with principals to clarify the vision of effective instruction in mathematics
across the system;

• emphasize connections between instructional strategies and programming found in
the recent Expert Panel reports and related resources on primary and intermediate
mathematics to enhance the cohesiveness of the instructional strategies and pro-
gramming applied in junior mathematics;

• ensure the availability of professional development tailored for principals, to help
them learn about the components of mathematics instruction and to facilitate 
mathematical learning in their schools.

Allocating Resources

Effective allocation of resources provides administrators and teachers with access to the
tools they need to enhance instruction and student achievement. 

Board leaders:

• supervise the acquisition and development of resources to support mathematics
instruction and learning;

• provide flexibility to compensate for individual school needs;

• allocate financial resources according to identified priorities;

• support mathematics personnel to assist with implementing mathematics initiatives
at the board level and among families of schools.

Principals

Knowledgeable principals are the key to creating the conditions within a school that help
to promote mathematical learning and achievement. Principals work to build a community
of learning within their school and strive to ensure that teachers are fully supported as
they implement their mathematics program. Principals provide leadership by:

– supporting classroom instruction;

– building a collaborative team;

– providing resources and support;

– promoting home and school partnerships.

Supporting Classroom Instruction

Teachers need to be supported as they begin to implement new ideas and to learn how
mathematical concepts develop throughout the junior grades. In an effort to support
mathematics instruction, principals should:

• embrace opportunities to increase their knowledge of instructional methods in order
to support staff in their journey;
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• act as an instructional leader in the school and model the characteristics of a mathe-
matics leader and learner;

• ensure that timetables are organized to provide daily one-hour blocks of time 
for mathematics instruction;

• stay abreast of new strategies and be cognizant of how the big ideas of mathematics
develop throughout the junior grades;

• facilitate opportunities for staff to discuss mathematics within the school day 
(e.g., through creative timetabling, blocks of planning time);

• monitor teachers’ mathematics programs to ensure that components are effectively
implemented and observed in classrooms (e.g., teaching through problem solving,
integration of communication, inclusion of alternative strategies);

• encourage and support attendance at mathematics professional development sessions
outside the school;

• ensure that school-based professional development is focused on mathematical 
content knowledge and knowledge of pedagogy;

• provide guidance and meaningful feedback about mathematics instruction.

Building a Collaborative Team

Principals play an important role in establishing a culture of collaboration and sharing
within their school. In mathematics, a subject that many teachers are anxious about, it
is essential that principals establish a sense of community and respect within the staff.
In building a collaborative team, principals:

• are aware of the issues related to math anxiety and integrate strategies that encourage
teachers to share their ideas in a risk-free environment;

• establish an atmosphere of trust;

• promote the sharing of best practices within the staff;

• encourage learning activities such as book clubs and study groups;

• celebrate the successes of individuals and teams.

Providing Resources

If teachers are to implement new ideas in their mathematics programs, they will need
appropriate resources. The shift from traditional instruction to a more problem-based
program should be supported by the availability of professional resources, manipulatives,
calculators, and computer software. To assist teachers in implementing new strategies, 
principals:

• ensure funding for professional resources that provide background knowledge and
ideas to be integrated into their classrooms;
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• provide additional funding so that all teachers have access to manipulatives on 
a daily basis;

• share information with staff about board-wide and outside-of-board professional
development;

• support professional development by allocating funds for staff to attend learning
opportunities outside the school (e.g., the OAME conference).

Promoting Home and School Partnerships

Communication with parents about mathematics education is essential. Since many
parents experienced instruction that was quite different from the methods outlined 
in this report, principals play a key role in:

• sharing the school’s focus on mathematics with parents and the community;

• including in school newsletters math sections that provide ideas for parents to use 
in assisting their child with mathematics at home;

• providing background information to parents regarding the rationale for changing
instruction in mathematics;

• facilitating family math evenings and information sessions to increase parental awareness.

Elementary Mathematics Support Personnel

Bringing about change in mathematics instruction in the junior division will require the
support of personnel in all school boards whose responsibility is to oversee the direction
of mathematics at the board level. We recommend that boards maintain or initiate the
role of elementary mathematics consultant/coordinator as well as investigate the intro-
duction of a new role, that of mathematics facilitator, who will work with a family of
schools under the guidance of a consultant/coordinator.

Consultant/Coordinator

The role of consultant/coordinator is essential to the success of this initiative. Because
many administrators and lead teachers lack content knowledge of mathematics 
and knowledge of pedagogy in mathematics, there is a need for support personnel 
(consultants/coordinators) who have experience in the elementary panel and have extensive
knowledge of mathematics teaching. The shift from the workshops of the past, which
focused on generic processes (e.g., keeping math journals), to more content-specific 
in-services has resulted in an increased need for such positions. The Expert Panel
report on primary mathematics (2003), along with the extensive training and resource
materials associated with it, has heightened awareness of the need to have elementary
mathematics leaders. 
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In light of the increasing complexity of mathematics concepts in the junior division,
there is a need for consultants/coordinators who have training in elementary mathematics
and who have a main focus of mathematics. It is a challenge for a generalist consultant to
provide in-depth content-based training in mathematics education. Consultants/coor-
dinators must themselves be continually learning in order to stay abreast of current
research and best practices in mathematics education. They benefit from attending 
professional development opportunities targeted to their role (e.g., OMCA, NCSM).

Consultants/coordinators play a vital role in working with senior administrators, prin-
cipals, and teachers to facilitate mathematical learning throughout a district school board.
They also provide guidance and support to our recommended mathematics facilitators
and promote linkages between the primary, junior, and intermediate math initiatives.

Mathematics Facilitators

Strong learning and growth have occurred for many primary lead mathematics teachers
as a result of the six days of training that were provided during the 2003–04 school year.
We want to sustain the work that has already been undertaken in the primary division
and build on it into the junior division. As discussed earlier, sustained support for
improvement is an essential element of effective professional development. Therefore,
we recommend that additional support be offered by the creation of mathematics
facilitators in each board to support the ongoing learning of both primary and junior
mathematics teachers (see the graphic on the opposite page). These facilitators would
support lead mathematics teachers within a cluster of schools. They would be individuals
who have demonstrated their expertise in mathematics teaching, who are willing to
continue their learning through additional training, and who are prepared to assist
their colleagues to deepen their knowledge and skills in math instruction. 

Math facilitators will require sufficient professional development at the beginning of
their mandate to reinforce the integration of research-based strategies into their practice.
They will also need to explore strategies to help them be successful in collaborating
and sharing with other colleagues.

Wherever possible, mathematics facilitators should continue to practise in their own
mathematics classrooms. Some boards are now experimenting with this kind of situation,
in which a mathematics facilitator continues to instruct in mathematics part-time in one
school. It is important to continue to build a critical mass of mathematics expertise in the
junior division in Ontario. This model, which includes some teaching, would support
that development.

Lead Teachers

The role of lead teacher has recently been introduced in Ontario through the Early Math
Strategy, Kindergarten to Grade 3. The first phase of training provided for early math
lead teachers focused on the big ideas of one strand of mathematics (Number Sense and
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Numeration in the English-language boards and Geometry and Spatial Sense in the French-
language boards) and provided background mathematical knowledge as well as instruc-
tional ideas that lead teachers could incorporate into their lessons. In the initial phase,
early math lead teachers were not expected to share their learning formally with other
teachers at their school, although some did so in an informal way throughout the year.

We anticipate the introduction of junior math lead teachers in the upcoming school
year. Lead teachers will help to promote mathematical learning and sharing throughout the
junior division in all schools in Ontario. Like early math lead teachers, junior math
lead teachers will need much training in order to expand their knowledge of the big
ideas of junior math and of how students learn mathematics. Initially, lead teachers will
need time to internalize and test out some of their new learning about mathematics
education. It would be unrealistic and unreasonable to expect that lead teachers would
immediately be able to share new learning with other staff without having integrated
such learning into their own instruction. This is particularly true for math lead teachers,
who must now compensate for the lack of a systemic focus across Ontario in previous
years on increasing content knowledge of mathematics and of mathematics pedagogy. 

Math lead teachers will also need time to learn about effective facilitation skills and
strategies for working with other staff. Since many elementary teachers have some level
of math anxiety, math lead teachers will need to learn about developing ways of creating
constructive learning environments when they are working with other staff members.
Since numeracy initiatives are a shared responsibility of the entire school community,
lead teachers should not be viewed as holding the sole responsibility for professional
learning in the school.

After sufficient training and time, math lead teachers may be asked to:

• offer support to the junior team in the school;

• share resources and ideas with others on an ongoing basis;



• act as a mentor, when appropriate;

• model lessons for other teachers, when appropriate;

• be a source of support for other teachers;

• be a team leader for the junior mathematics teachers in the school;

• continue to attend professional development sessions;

• continue to implement new mathematical strategies in their own classroom. 

We recognize that the role of lead teacher will vary from board to board as a reflection
of the context and culture of the local school district. Lead teachers will need continued
and ongoing support from principals, math facilitators, consultants/coordinators, and
board leaders. They will benefit from opportunities to network and share with other
lead teachers throughout the year as well as from continuing professional development
that focuses on sound mathematical teaching and good pedagogy. 

The choice of a lead teacher is crucial to the success of this initiative. Teachers do not need
to have any background in the area but should be interested in learning more about
mathematics. There should be different lead teachers for math and for literacy, because
the demands on a teacher attempting to perform both functions would be too great and
opportunities to develop and later share his or her knowledge and skills would be limited.

Role of the Ministry of Education

The Ministry of Education plays an integral role in the implementation of all of the
components of the junior mathematics initiative. The ministry has taken a lead role in
the development of a comprehensive plan to improve student achievement in mathe-
matics and to provide teachers with some of the supports they need. The articulation of
a common vision of mathematics instruction across Ontario will benefit all members of
the educational community and will promote sharing, collaboration, and networking
both within individual boards and among boards of education. At the same time, we
encourage the ministry to be flexible in allowing boards to create the individualized
implementation plans required to meet the specific and diverse needs of their teachers
and students.

We recommend that the ministry continue to support mathematics education in
Ontario by:

• ensuring alignment between projects and resources developed by different branches
of the Ministry of Education, so that teachers are receiving consistent messages 
(e.g., alignment of the big ideas in the forthcoming Guide to Effective Instruction in
Mathematics, Kindergarten to Grade 6 and in revisions to the Ontario curriculum);

• continuing to develop resources to support teachers in teaching mathematics;
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• completing the big ideas for all strands of the curriculum and developing related
instructional resources to ensure consistency across Ontario;

• providing adequate training for lead teachers to ensure that they have the knowledge
and skills to perform the role effectively;

• continuing to base resources and training on current research about how children learn;

• providing access to training for all teachers in the junior division;

• ensuring that all school boards commit to a having mathematics as a system priority;

• recognizing that change in mathematics instruction will take time and that profes-
sional development and other supports must be sustained over an extended period
of time to guarantee success.

Role of Faculties of Education

Faculties of education provide the foundation of teachers’ formal education in
mathematics instruction. If the recommended changes in instruction are to take place,
prospective teachers will need greater support before entering into the profession than
they now receive. 

Faculties must devote sufficient time (a minimum of a half course or 36 hours) to the
mathematics instruction of prospective teachers. In recognition of their important role
in this area, many Ontario faculties have already moved to devoting more course hours
to mathematics instruction than has been the case in the past and have begun offering
extra non-credit classes or tutoring to strength students’ mathematics knowledge. 
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We know that the mathematical demands on our students will only increase as they
progress through school, take up their adult lives at home and in the workplace, and
become active members of their society. Mathematical literacy will be essential to their
future success in these areas. In order to function in a mathematically literate way in
the future, students must have a strong foundation in mathematics in their elementary
school years. As illustrated throughout this report, a strong foundation involves much
more than the rote application of procedural knowledge. All students should be able to:

• understand, make sense of, and apply mathematics;

• make connections between concepts and see patterns throughout mathematics;

• communicate their reasoning and, equally, listen to others reason mathematically;

• develop the capacity and the flexibility of thinking that will allow them to tackle
new areas of mathematics and new problems; 

• enjoy mathematics and be willing to persevere in doing mathematics; 

• view themselves as capable of doing mathematics.

We have discussed in detail the types of instructional practice that will most effectively
lay the foundation of strong mathematical literacy. The ideas that we have proposed
build on the work under way in the primary and junior divisions of Ontario schools.
The goal of this document is to broaden and deepen the work already begun by 
providing a concrete vision of effective mathematics instruction at the junior level. 
Such instruction: 

• is based on problem solving and inquiry; 

• explores worthwhile and interesting mathematical tasks;

• begins with and capitalizes on students’ thinking; 

• develops a genuine mathematical community in the classroom; 

• includes varied and relevant instructional and assessment strategies;

• is taught by teachers who have a strong knowledge of mathematical content 
and pedagogy. 
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6 Conclusion 



To make this vision a reality, educators need to have opportunities for ongoing, sustained,
quality professional development in mathematics. They also need sufficient support
and resources in the classroom. 

We recognize that time and effort will be needed to make the ideas discussed in this
document bear fruit. The project is an ambitious one. We believe, however, that the
journey will be worthwhile; indeed, is essential for our students’ future capacity. We call
upon all involved, including parents, teachers, principals and boards, math facilitators,
board and district administrators, institutions of higher learning, and professional
organizations, to focus on making this vision a reality.
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Recommended Recommended for 

Manipulative for Every Classroom Every Grade/Division 

Abacus X 

Attribute blocks X 

Balance and weights X 

Base 10 materials, X
with transparent 
overhead set 

Calculators with X 
two-line display 

Overhead calculator X 

Centicubes X

Connecting plastic X
shapes to build 2-D 
shapes and 3-D nets 

Coloured tiles X 

Coloured relational rods X

Counters X

Dice/Numbered cubes X 

Fraction kit X 

Geoboards – X 
transparent (5 X 5 
and 11 X 11)

Geometric solids X

Graduated beakers X 

Ninety-nine chart, X
Hundreds chart, 
hundreds board 

Measuring spoons X 

Appendix A: 
A List of Recommended Manipulatives
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Recommended Recommended for 

Manipulative for Every Classroom Every Grade/Division 

Measuring cups X 

Measuring tapes X 

Metre stick X 

Mirror X 

Plastic transparent X 
tools 

Playing cards X 

Money X 

Number lines X 

Pattern blocks, X 
with transparent 
overhead set 

Pentominoes X 

Plastic polygons X
(wide variety of 
triangles and regular 
and irregular 
quadrilaterals) 

Protractors X 

Rekenrek (Dutch X
calculating frame)

Safety compass X 

Scales X 

Spinners X 
(number, colour) 

Square flat tiles X

Standard masses X 

Stamps of various X
mathematical 
manipulatives 
(e.g., pattern 
blocks, tangrams, 
base 10 materials) 
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Recommended Recommended for 

Manipulative for Every Classroom Every Grade/Division 

Stopwatch X 

Tangrams, with X
transparent overhead set

Thermometers X 

Two-colour counters X 

3-D solids X 

Trundle wheel X 





The following is a list of selected resource books that teachers can use to support their
instruction. We encourage school boards and individual schools to continue to develop
and maintain a complete and up-to-date collection of these resources. 

ENGLISH LANGUAGE RESOURCES

Overall Instruction Guides

Burns, M. (2000). About teaching mathematics: A K–8 resource (2nd ed.). Sausalito, 
CA: Math Solutions Publications.

Carpenter, T. P., Loef Franke, M., & Levi, L. (2003). Thinking mathematically: Integrating
arithmetic and algebra in elementary school. Portsmouth, NH: Heinemann.

Chapin, S., & Johnson, A. (2000). Math matters: Understanding the math that you teach.
Sausalito, CA: Math Solutions Publications.

Haylock, D., & McDougall, D. (1999). Mathematics every elementary teacher should know.
Trifolium Books.

Lester, K., & Charles, R. I. (Eds.). (2003). Teaching mathematics through problem 
solving: Prekindergarten–Grade 6. Reston, VA: National Council of Teachers 
of Mathematics.

Sullivan, P., & Lilburn, P. (1997). Good questions for math teaching: Why ask them and
what to ask. Sausalito, CA: Math Solutions Publications.

Van de Walle, J., & Folk, S. (2005). Elementary and middle school mathematics: Teaching
developmentally (Canadian edition). New York: Longman.

Specific Content Area Resources and Units

Burns, M. (1989). A collection of math lessons from Grades 3 through 6. New York: 
Math Solutions Publications.

Burns, M. (1995). Math by all means: Probability, Grades 3–4. New York: 
Math Solutions Publications.

Burns, M. (1996). 50 problem-solving lessons. New York: Math Solutions Publications.

65

Appendix B: 
Professional Resources for Teachers



Burns, M. (2001). Lessons for introducing fractions. Sausolito, CA: Math Solutions
Publications. 

Burns, M., & Humphries, C. (1990). A collection of math lessons from Grades 6 through 8.
New York: Math Solutions Publications.

Erickson, T. (1989). Get it together. Berkeley, CA: EQUALS.

ETA/Cuisenaire Publications. Supersource series, Grades 3–4 and 5–6. Urbana, IL: Author. 

National Council of Teachers of Mathematics. (2001). Navigations series, Grades 3–5.
Reston, VA: Author. 

Ohanian, S., & Burns, M. (1997). Math by all means: Division, Grades 3–4. Sausalito, 
CA: Math Solutions Publications.

Rectanus, C. (1994). Math by all means: Geometry, Grades 3–4. Sausalito, 
CA: Math Solutions Publications. 

Rectanus, C. (1997). Math by all means: Area and perimeter, Grades 5–6. Sausalito, 
CA: Math Solutions Publications.

Skinner, P. (1998). It all adds up. Sausalito, CA: Math Solutions Publications.

Wickett, M., & Burns, M. (2001). Lessons for extending multiplication. Sausolito, 
CA: Math Solutions Publications. 

Wickett, M., Kharas, K., & Burns, M. (2002). Lessons for algebraic thinking: Grades 3–5.
Sausalito, CA: Math Solutions Publications.

Specific Content Area Theory

Fosnot, C. T., & Dolk, M. (2001). Young mathematicians at work: Constructing
multiplication and division. Portsmouth, NH: Heinemann.

Fosnot, C. T., & Dolk, M. (2002). Young mathematicians at work: Constructing 
fractions, decimals, and percents. Portsmouth, NH: Heinemann.

Ma, L. (1999). Knowing and teaching elementary mathematics. Mahwah, NJ: Erlbaum.

Schifter, D. (1996). What’s happening in math class? (Vol. 1). New York: Teachers
College Press.

Schifter, D., Bastable, V., & Russell, S. J. (1999). Developing mathematical ideas:
Number and operations, part 1– Building a system of tens. Parsippany, NJ: 
Dale Seymour Publications. 

Schifter, D., Bastable, V., & Russell, S. J. (1999). Developing mathematical ideas:
Number and operations, part 2 – Making meaning for operations. 
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Children’s Literature and Resources Books

Bresser, R. (1995). Math and literature: Grades 4–6. New York: Math Solutions
Publications.

Thiessen, D. (Ed.). (2004). Exploring mathematics through literature: Articles and lessons
for Prekindergarten through Grade 8. Reston, VA: National Council of Teachers 
of Mathematics.

Whitin, D. J., & Wilde, S. (1995). It’s the story that counts: More children’s books for
mathematical learning, K–6. Portsmouth, NH: Heinemann.

Assessment

National Council of Teachers of Mathematics. (2001). Mathematics assessment: 
Cases and discussion questions for Grades K–5. Reston, VA: Author.

Stenmark, J., & Bush, W. (Eds.). (2003). Mathematics assessment: A practical handbook
for Grades 3–5. Reston, VA: National Council of Teachers of Mathematics.

Special Needs

Sliva, J. (2004). Teaching inclusive mathematics to special learners, K–6. Thousand Oaks,
CA: Corwin Press.

New Teachers

Burns, M., & Silbey, R. (1999). So you have to teach math? Sound advice for K–6 Teachers.
White Plains, NY: Math Solutions Publications.

Elementary Teachers’ Federation of Ontario. (2004). Making math happen in the junior
years. Toronto: Author

Leadership Resources 

Burns, M. (1999) Leading the way. Sausalito, CA: Math Solutions Publications.

Love, N. (2002). Using data/getting results: A practical guide for school improvement in
mathematics and science. Norwood, MA: Christopher-Gordon (on behalf of TERC).

Miles Grant, C., Davidson, E., Shulman Weinberg, A., Scott Nelson, B., Sassi, A., &
Bleiman, J. Lenses on learning: Instructional leadership in mathematics (modules 1, 2,
and 3). Parsippany, NJ: Dale Seymour Publications. 

Mirra, A. J. (2003). Administrator’s guide: How to support and improve mathematics 
education in your school. Reston, VA: National Council of Teachers of Mathematics.

National Association of Elementary School Principals. (2002). What principals need to
know about teaching math. Alexandria, VA: Author.
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Working With Parents

Litton, N. (1998). Getting your math message out to parents: A K–6 resource. Sausalito,
CA: Math Solutions Publications.

Thompson, V., & Mayfield-Ingram, K. (1998). Family math for the middle years. Berkeley:
University of California.

Communication

Burns, M. (1995). Writing in math class: A resource for Grades 2–8. Sausalito, CA: 
Math Solutions Publications.

Chapin, S., O’Connor, C., & Anderson, N. (2003). Classroom discussions: Using math
talk to help students learn, Grades 1–6. Sausalito, CA: Math Solutions Publications.

Whitin, P., & Whitin, D. J., (2000). Math is language too. Urbana, IL: National
Council of Teachers of English and National Council of Teachers of Mathematics.

FRENCH-LANGUAGE RESOURCES

Ressources professionnelles

Centre franco-ontarien de ressources pédagogiques. (2001). Les mathématiques… 
un peu, beaucoup, à la folie! Géométrie (4e à la 6e année). Ottawa: Author.

Centre franco-ontarien de ressources pédagogiques. (2001). Modélisation et algèbre 
(4e à la 6e année). Ottawa: Author.

Centre franco-ontarien de ressources pédagogiques. (2002). Recueil de pratiques réussies
en mathématiques de la 6e à la 9 e année. Ottawa: Author.

Centre franco-ontarien de ressources pédagogiques. (2003). Recueil de pratiques réussies
en mathématiques de la 1re à la 5e année. Ottawa: Author.

Centre franco-ontarien de ressources pédagogiques. (2004). Traitement des données 
et probabilité (4e à la 6e année). Ottawa: Author.

Lemoyne, G., & Conne, F. (1999). Le cognitif en didactique des mathématiques. 
Montreal: Les Presses de l’Université de Montréal.

Cmathématique website. www.cmathématique.com
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Askew, M. (1999). It ain’t (just) what you do: effective teachers of numeracy. In 
I. Thompson (Ed.), Issues in teaching numeracy in primary schools (pp. 91–102).
Buckingham, UK: Open University Press.

Baek, J. M. (1998). Children’s invented algorithms for multidigit multiplication problems.
In L. Morrow (Ed.), Teaching and learning of algorithms in school mathematics
(pp. 151–160). Reston, VA: National Council of Teachers of Mathematics.

Ball, D., & Cohen, D. (1996). Reform by the book: What is – or might be – the role
of curriculum materials in teacher learning and instructional reform? Educational
Researcher, 25(9), 6–8.

Baroody, A., & Ginsburg, H. (1990). Children’s learning: A cognitive view. Journal 
for Research in Mathematics. Monograph 4.

Battista, M. (1999). The mathematical miseducation of America’s youth. Phi Delta
Kappan, 80(6), 425–433.

Battista, M. (2003). Understanding students’ thinking about area and volume measurement.
In D. H. Clements and G. W. Bright (Eds.), Learning and teaching measurement
(pp. 122–142). Reston, VA: National Council of Teachers of Mathematics. 

Bednarz, N. (2000). Formation continue des enseignants en mathématiques : Une
nécessaire prise en compte du contexte. In P. Blouin and L. Gattuso (Eds.), Didactique
des mathématiques et formation des enseignants (pp. 61–78). Mont-Royal, QC:
Modulo Éditeur. 

Birch, S. H., & Ladd, G. W. (1997). The teacher-child relationship and children’s early
school adjustment. Journal of School Psychology, 35, 61–79.

Black, P., & Wiliam, D. (1998, October). Inside the black box. Phi Delta Kappan, 80(2),
139–148.

Boaler, J. (2002). Learning from teaching: Exploring the relationship between “reform”
curriculum and equity. Journal for Research in Mathematics Education, 33(4),
239–258.

Bresser, R. (1995). Math and literature: Grades 4–6. New York: Math Solutions
Publications.

Bresser, R. (2003, February). Helping English-language learners develop computation
fluency. Teaching Children Mathematics, 9(6), 294.
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